微分同胚

  • 网络Diffeomorphism;diffeomorphic;diffeomorphisms
微分同胚微分同胚
  1. 基于能量平衡方程建立了热烟气层轰燃模型,经量纲归一化和微分同胚变换,得到属于燕尾突变的势函数。

    A catastrophe potential function , which has the same form of swallowtail catastrophe , was obtained by dimensional normalization and diffeomorphism .

  2. 首先,利用微分同胚变换,提出了该类系统相对阶满足不同条件时的观测器设计问题。

    Firstly , in different environment of relative degree , the design problem of the observer was proposed by means of diffeomorphism transformation .

  3. 证明了Cn中有限型实超曲面到另一个实超曲面的每一个光滑CR同胚必定是CR微分同胚。

    Every smooth CR homeomorphism from a real hypersurface of finite type to a real hypersurface in C ~ n is a CR diffeomorphism .

  4. 微分同胚群Diff(s)在参数长度不固定情形下的推广

    Extension of diffeomorphism group diff ( s ) in the case of non-fixed parameter length

  5. 我们证明了对于一个曲率下有界的开流形,当它的Excess被其临界半径的某个函数所界定时,它就有有限拓扑型或微分同胚于n维z欧氏空间。

    We prove that for an open manifold with curvature bounded from below , it has finite topological type or it is diffeomorphic to R ~ n when its excess is bounded by some function of its critical radius .

  6. 通过对一族耦合非线性扩散方程及其相关的特征值问题的研究,证明了此特征问题的解空间与对应的非线性Lenard特征值问题的解空间是微分同胚的;

    In this paper , through the study to the hierarchy of coupled nonlinear evolution equations , and its related eigenvalue problem , it is proved that the solution space to the eigenvalue problem and the solution space to the Lenard eigenvalue problem are differentiable homeomorphism .

  7. 基于微分同胚的非线性系统解耦线性化

    Linearization and Simultaneous Decoupling for nonlinear system based on diffeomorphism

  8. 量子引力扩展圈表象中微分同胚约束的作用

    Action of the Diffeomorphism Constraint in the Extended Loop Representation of Quantum Gravity

  9. 我们考虑一类定义在乘积空间上的非双曲微分同胚,借助Pesin理论以及一致双曲动力系统的基本理论,研究了此类系统的遍历论。

    We investigate a class of non-hyperbolic diffeomorphism defined on the product space .

  10. 通过引入含估计参数的微分同胚变换,给出了一种非参数纯反馈系统的自适应控制,并对I.Kanellakopoulous等提出的参数纯反馈系统的自适应控制作了改进,使之能抵御有界匹配外扰。

    By using diffeomorphism containing estimated parameters , we propose a new nonlinear adaptive control strategy for non-parameter-pure-feedback systems .

  11. 某些非线性系统在一定条件下可以通过微分同胚与状态反馈变换为具有三角形结构的系统。

    Some nonlinear systems can be transformed into special triangular configuration systems by a diffeomorphism and a feedback transformation under certain conditions .

  12. 但微分同胚不变理论存在需要解释的问题,空时及物理理论的意义仍不明确。

    But diffeomorphism invariant theory leaves some problems to be explained , and the meanings of spacetime and physical theory are still in question .

  13. 然后,我们将看到微分同胚群作用下的辛商为特殊子流形模空间上的以环面为结构群的丛。

    And then we will see that in the framework of diffeomorphism group the symplectic quotient is torus bundle over the moduli space of special submanifold .

  14. 首先,我们将看到微分同胚群作用下矩映射存在,且具体给出。类似的,辛同构群作用下的矩映射也存在。

    Firstly , we will see that in the framework of diffeomorphism group the moment map exists and similarly in the framework of symplectic group it exists too .

  15. 研究方法非常多,通常有代数方法,变分方法,不动点方法,拓扑度同伦方法,单调迭代方法,微分同胚方法等。

    There 's many methods to study it , such as algebraic method , variational method , fixed point method , topological degree homotopy method , monotone iterated method , homeomorphism method .

  16. 以不同方法将微分同胚约束(D约束)对扩展圈表象抽象波函数的作用特殊化到圈表象上。

    By a different way , we particularized the action of the diffeomorphism constraint ( D constraint ) on the abstract wave function in the extended loop representation to the action in the loop representation .

  17. 在保留混沌基本特征的前提下,该文引进弱横截与弱混沌概念.证明了弱横截的平面微分同胚必产生弱混沌。

    On the premise of unchange the fundamental characteristic of chaos , the article introduce the concept of weak transverse and weak chaos and prove that the diffeomorphism is weak chaotic if it have weak transverse homoclinic point .

  18. 分割和配准在医学图像分析中有着重要的作用,我们也发展了基于偏微分方程的医学图像分割算法和基于微分同胚Demons算法的医学图像配准算法。

    We developed a segmentation method based on partial differential equation and a registration method based on diffeomorphic demons algorithm for medical images processing .

  19. 介绍了一种非线性系统精确线性化的新方法&微分几何法,它是采用微分流形的概念,通过状态空间的微分同胚变换和状态反馈控制使得非线性系统线性化。

    This paper introduces briefly differential geometric approach for exact linearization of nonlinear systems . The method based on the concept of differential manifold linearizes nonlinear systems by diffeomorphisms and feedback transformations of state space .