强化学习

  • 网络reinforcement;Reinforcement Learning;intensive study
强化学习强化学习
  1. 一种基于团队马尔可夫博弈的多agent协同强化学习算法

    A Multi-agent Cooperative Reinforcement Learning Algorithm Based on Team Markov Game

  2. Agent的强化学习与通信技术研究及应用

    Research and Application on Reinforcement Learning and Communication Technology in Agent

  3. 现在研究表眀,一个学期当中定期的小测试、简短的论文和其他仼务都能更好的强化学习和记忆力。

    " Research now shows that regular quizzes , short essays , and other assignments over the course of a term better enhance learning and retention . "

  4. Agent强化学习是机器学习的一个重要分支。

    Agent reinforcement learning is an important branch of machine learning .

  5. 单agent强化学习与多agent强化学习比较研究

    Comparative Analysis of Single-Agent Reinforcement Learning and Multi-Agent Reinforcement Learning

  6. 多Agent协作团队的强化学习方法研究

    The Study of Multi-Agent Reinforcement Learning Methods for Cooperative Team

  7. 伙伴选择问题的多Agent强化学习演化博弈方法

    Multi Agent reinforcement learning evolutionary game algorithm for partner selection

  8. 基于信度分配函数的Agent强化学习算法

    Agent Reinforcement Learning Method Based on Credit Assignment Function

  9. 多Agent系统中强化学习的应用和问题。

    The applications and problems adopting reinforcement learning algorithms in the multi-agent system .

  10. 基于强化学习的多移动Agent学习算法

    Multi Mobile Agent Learning Algorithm Based on Reinforcement Learning

  11. 基于强化学习的指挥控制Agent适应性仿真研究

    Simulation on Adaptive Mode of Command and Control Agent Based on Reinforcement Learning

  12. 随机博弈框架下的多agent强化学习方法综述

    Survey of Multi-agent Reinforcement Learning in Markov Games

  13. 多Agent系统中强化学习的研究现状和发展趋势

    Reinforcement Learning Technology in Multi - Agent System

  14. 基于多Agent强化学习的战时备件供应保障动态协调机制

    Research on Multi Agent Reinforcement Learning Based Dynamic Coordination Mechanism for Wartime Spares Support

  15. 一种基于强化学习的学习Agent

    A learning agent based on Reinforcement Learning

  16. 提出了一种基于分布式强化学习的多Agent协调模型并给出了相应的算法。

    A multi-agent coordination model and corresponding algorithm based on distributed reinforcement learning are proposed .

  17. 一种基于意图跟踪和强化学习的agent模型

    Intention Tracking Based Reinforcement Learning Agent Model

  18. 一种新颖的多agent强化学习方法

    A Novel Multi-Agent Reinforcement Learning Approach

  19. 分层强化学习中的Option自动生成算法

    Option Automatic Generation in Hierarchical Reinforcement Learning

  20. 第四,作者研究了学习Agent使用强化学习、遗传算法自适应地调整领域模型和用户模型。

    Fourthly , leaning agent adjusts the domain model and user model adaptively by reinforcement learning and genetic algorithm .

  21. Q学习是一种重要的强化学习算法。

    Q learning is of great importance in reinforcement learning .

  22. 一种有限时段Markov决策过程的强化学习算法

    An algorithm of reinforcement learning for finite-horizon Markov decision processes

  23. 基于Markov对策和强化学习的多智能体协作研究

    Research on Multiagent Cooperation with Markov Game and Reinforcement Learning

  24. 基于Multi-Agent协作强化学习的分布式发电系统的研究

    Research of Distributed Power Generation System Based on Multi-Agent Co-operation Strengthens Study

  25. 在Agent的学习中,强化学习是其中主要的一类学习方法,被公认为是构成Agent的核心技术之一。

    Reinforcement learning is the main kind of learning method , which is recognized as an ideal technology to construct the intelligent agent .

  26. 基于Q强化学习与CMAC的移动机器人局部路径规划

    Mobile Robot Local Path Planning Based on Q Reinforcement Learning and CMAC

  27. 自适应模糊RBF神经网络的多智能体机器人强化学习

    Adaptive Fuzzy RBF Networks Learning for Autonomous Multi-robots

  28. 基于强化学习的一类NP问题求解算法

    An Efficient Solution Algorithm Based on Reinforcement Learning for Some NP Problems

  29. 目前主流的强化学习算法是Q学习算法,但Q学习本身存在一些问题。

    Q learning algorithm is the most popular reinforcement learning algorithm , but the algorithm exist some problems .

  30. 而强化学习中的Q学习算法在解决较为复杂问题时,需要大量的存储空间,忆阻交叉阵列恰好能够解决这个问题。

    Q-learning algorithm in the reinforcement learning needs a lot of storage space while solving the more complex problems .