密度矩阵重整化群

  • 网络Density Matrix Renormalization Group;DMRG
密度矩阵重整化群密度矩阵重整化群
  1. 本文的最后用完全对角化方法、Lanczos精确对角化方法和密度矩阵重整化群方法分别处理一维晶格系统,尽管所处理的系统格点数非常少,仍然得到了与理论研究一致的结果。

    In this paper , we use full diagonalization , Lanczos exact diagonalization and density matrix renormalization group to deal with the one dimensional lattice . Although the system include several sites , the result is agreed with the analyzing method .

  2. 低维分子磁性材料的密度矩阵重整化群研究

    Low-dimensional Molecular Magnetic Materials Studied by Density Matrix Renormalization Group

  3. 对于具有链间耦合的准一维有机铁磁链,本文运用两步骤的密度矩阵重整化群方法,计算了系统的基态能量、自旋位形、二聚化等物理量。

    For the interchain coupling model of the quasi-one-dimensional organic ferromagnets , we use the two-step DMRG method to calculate the total energy , the spin configuration and the dimerization .

  4. 利用数值密度矩阵重整化群方法对一种特殊的准一维海森堡反铁磁自旋系统的基态磁性序问题进行研究,计算了单个晶胞的基态能、自旋关联函数以及自旋能隙。

    The magnetic order of a special quasi-one-dimensional Heisenberg antiferromagnetic spin model with numerical density matrix renormalization groups is discussed . The ground energy per unit cell , spin correlation function and the spin gap are calculated .

  5. 通过对比自旋密度泛函理论和密度矩阵重整化群方法对基态性质的计算结果可以得到:当相互作用不是很强时,自旋密度泛函理论可以方便快捷地给出令人满意的计算结果。

    Comparing the numerical results of the spin-density-functional theory with those of density-matrix renormalization group , we conclude that , when the interaction is not very strong , we can get the satisfactory results easily by the spin-density-functional theory .