向量场
- 网络Vector field
-
第二部分介绍Zq-等变向量场的基本理论知识;
In second part , some basic knowledge about Zq - equivariant vector field is stated ;
-
提出了一种用于运动估计的预测三步搜索(PTSS)算法,它是基于三步搜索(TSS)算法,同时充分利用了运动向量场的空间和时间相关性的一种块匹配运动估计算法。
This paper proposed a new predictive three step search algorithm ( PTSS ), based on three step search algorithm . The algorithm is a kind of block matching motion estimation algorithm , which adequately utilizes the spatial and temporal correlation of motion vector field .
-
假设C还是一样的,但现在的向量场变为。
Let 's say that we had the same C , but now the vector field .
-
R上向量场的一个几何性质
A Geometric Property of Vector Fields on R ~ n
-
哪个k?,你是说那个向量场。
Which k hat ? Oh , you mean the vector field .
-
1(p)上定义了组合算符η,给出了由1-形式诱导的向量场是辛向量场的充要条件,同时还得到了有关组合算符η和Poisson张量的一些恒等式。
Also obtained are some identities about combination operator η and Poisson Tensors .
-
这是一个新的向量场,可以用f来建立。
But it 's a new vector field that you can build out of f.
-
也就是向量场F实际上是一个函数的梯度。
Say that F , our vector field is actually the gradient of some function .
-
也就是,x轴上,向量场都是y方向的。
If I 'm on the x-axis , my vector field is actually in the y direction .
-
容有Killing向量场的Riemannian流形的超曲面
The Hypersurfaces of Riemannian Manifold of Admitting Killing Vector Field
-
表达式是关于x、y、z的函数,放在一起就得到了一个向量场。
These expressions are functions of x , y , z and together you form a vector out of them .
-
高阶kdv向量场X3
The Higher Order Kdv Vector Field X_3
-
你可以用它来定义,一个没有z分量的空间向量场。
But , you can also use it to define a vector field in space just with no z component .
-
我们不知道f是什么,但是向量场是知道的,所以我们可以计算出来。
And we don 't know what little f is , but we know what the vector field is so we can compute that .
-
在本文里我们首先研究了具有Z2-对称性的范式理论和退化向量场的普适开折理论。
In this paper , first we study normal form theory with Z2-symmetry and universal unfolding theory of the degenerate vector field .
-
平行向量场与Jacobi场的关系
The Relation between Parallel Vector Field and Jacobi Field
-
关于局部Lipschitz向量场的旋转度
On the Rotation of Locally Lipschitz Vector Fields
-
实际上,这个向量场除了z轴处处有定义,它违背了通常的定理。
That vector field is actually defined everywhere except on the z axis , and it violates the usual theorem that we would expect .
-
这样的一个向量场的一种写法就是。。。,我看看,z肯定就是,因为所有东西都是在平面上移动。
One way to write down this field , 0 let 's see , the z component is zero because everything is moving horizontally .
-
当然,你可以直观地算出来是因为,你可以直观地在图上看出x轴上,向量场是垂直指向的。
Of course , you can also do it geometrically because geometrically , you can see in the picture along the x-axis , the vector field is pointing vertically .
-
Hilbert流形上A-proper向量场的广义度
A Generalized Degree for A-proper Vector Fields on Hilbert Manifolds
-
关于具平行平均曲率向量场的三维紧致子流形的Ricci曲率的Pinching问题
On Pinching Problem of Ricci Curvature for 3-dimensional Compact Submanifolds with Parallel Mean Curvature
-
本文讨论了Poisson积流形的一些性质,得出了Hamilton向量场的若干公式;
In this paper , Some properties of product poisson manifold are discussed , some formulas of Hamilton vector field are also obtained ;
-
向量场的Nielsen数
Nielsen Number of Vector Field
-
也就是说向量场的第一个分量,是f关于变量x的偏导数,第二个分量是,f关于y的偏导数。
That means that the first component of a field is just the partial of f with respect to some variable x and the second component is the partial of f with respect to y.
-
关于特征指数:一个新的为向量场乘法遍历定理而构造的Borel集
On Characteristic Exponents Construction of a New Borel Set for the Multiplicative Ergodic Theorem for Vector Fields
-
需要建立向量场点乘ndS的通量积分。
So , we need to set up the flux integral for a vector field dot ndS .
-
Yano关于具有边界的可定向黎曼流形上的调和和Killing向量场的结果加以推广,显然这个方法也可应用到调和张量场和Killing张量场的情形,这将在另文讨论。
Yano about the harmonic and Killing vector fields in Compact orientable Riemannian spaces with boundary by means of Stokes ' and Green 's theorem .
-
假设有一个带电荷的颗粒,这个向量场就会告诉你,有一个电场力,其大小为微粒上的电荷与电场E之积。
If you have a particle carrying an electric charge then this vector field will tell you , basically there will be an electric force which is the charge times E that will be exerted on that particle .
-
要看向量场,能否写成,其中f是同一个函数。
We want to know whether a given vector field with components P , Q and R can be written as f sub x , f sub y and f sub z for a same function f.