动力系统理论

  • 网络dynamics systems;dynamic systems theory;dynamical system theory
动力系统理论动力系统理论
  1. 非线性动力系统理论与地貌学研究

    Nonlinear dynamical systems theory and geomorphology study

  2. 单调动力系统理论及其应用

    Monotone Dynamical Systems Theory and Its Applications

  3. 极小映射是动力系统理论中常见的概念.本文证明了极小映射的一个性质.说明了,在连续映射族C0(X,X)中,一致极小映射族可扩张为闭集族。

    In this paper we give a character of minimal mappings , and prove that the consistent class of minimal mappings is closed in C0 ( X , X ) .

  4. Klaus使用随机动力系统理论建立了关于市场份额与投资份额的模型,并得到了将来时刻最优投资策略的显式表达式。

    Klaus utilize random dynamical system theory to set up a model for market share and invest share . Moreover an explicit formula for the best investment strategy in the future time is derived .

  5. 所涉及的数学理论包括:上下解方法、比较原理、单调动力系统理论、全局分歧理论、拓扑不动点理论、Lyapunov-Schmidt过程和扰动理论等。

    The tools used here include super-sub solutions method , comparison principle , monotone system theory , global bifurcation theory , fixed-point theory of topology , Lyapunov-Schmidt procedure and perturbation technique .

  6. 运用平面动力系统理论、分支理论和直接方法,研究了Whitham-Broer-Kaup方程,证明该方程存在光滑孤立波解、扭结波和反扭结波解和无穷多光滑周期波解。

    Firstly , the Whitham-Broer-Kaup system has been studied in light of the theory of dynamical systems , the theory of bifurcation , and the direct method . The existence of smooth solitary wave solutions , kink and anti-kink wave solutions and periodic wave solutions has then proved .

  7. 脉冲动力系统理论在生物动力系统中的应用

    Application of Theory of Impulsive Dynamics System in Biological Dynamics System

  8. 用动力系统理论研究多自由度非线性振动问题

    Study on Nonlinear Vibration Problems of Multi-Degree-Freedom System by Dynamic System Theory

  9. 解的稳定性是动力系统理论中的重要组成部分;

    Stability is the important part of a dynamical system ;

  10. 基于微分流形的动力系统理论方法;

    The theory and method of dynamic system based on the differential manifold ;

  11. 基于非线性动力系统理论的土木工程安全性判断

    Estimation of Civil Engineering Safety by Analyzing Monitoring Data Based on Theory of Non-linear Dynamic System

  12. 在脉冲动力系统理论中,把这种瞬时突变的现象称之为脉冲。

    In the theory of impulsive differential equations , we call the discontinuous trajectories as impulses .

  13. 根据非线性动力系统理论进行负荷建模和预测,将预测精度作为辨识工具,识别电力负荷自身变化的动力特性。

    Prediction accuracy is selected as an identification tool to analyze dynamic characteristics of power load variation .

  14. 而单调控制系统是将控制理论与单调动力系统理论结合起来,得到的一类新的系统。

    However , the monotone control systems are obtained from the combination of the control theory and the monotone dynamical systems theory .

  15. 目前借助动力系统理论,关于具身认知的神经建模研究也蓬勃发展起来。

    At present , benefitting from the dynamic system theory , the research of neural modeling of embodied cognition is developing vigorously .

  16. 系统的混沌性判定问题,除了需要较深的动力系统理论以外,还需要大量的数值计算、计算机仿真和算法分析,使得研究非常的艰难。

    Especially , chaos verification needs not only the theory of dynamical system but also a great deal of numerical calculation , computer simulation and algorithm analysis .

  17. 系统的稳定性分析是动力系统理论中的一个重要问题,是受控对象能精确地满足设计指标的前提条件。

    The stability of the systems is an important factor in the theory of dynamic systems , it make the controlled object meet the design index exactly .

  18. 依据非线性动力系统理论,稳定域边界应由其所有不稳定平衡点的稳定流形的并集构成。

    According to the theory of nonlinear dynamic system , the stability boundary is the union of the stable manifolds of the equilibrium points on the stability boundary .

  19. 另外,我们也利用单调动力系统理论给出了一些判断与空间变量无关的整体解存在的充分条件。

    Moreover , some sufficient conditions are given to ensure the existence of the solutions independent of the spatial variable via using the theory of monotone dynamical systems .

  20. 首先分析了平凡的、半平凡的非负解的稳定性,得到了系统解的一些渐近行为,并根据单调动力系统理论得到了正平衡解的存在性。

    First , the elementary stability and asymptotic behavior of solutions of the system are determined . The existence of positive steady-state solutions is given by monotone system theory .

  21. 认知动力系统理论是上个世纪90年代前后,继符号主义和联结主义之后,认知科学中一种快速发展起来的理论。

    Following Symbolism and Connectionism , Dynamical Systems Theory ( DST ) has developed rapidly in the science of cognition sciences since the 1990s . Cognitive Radio Technology the power ;

  22. 根据已经建立的根、冠关系模型,运用动力系统理论,研究根、冠生长过程中的平衡与稳定性。

    Based on the competing and reciprocal relation models for the root and shoot , the equilibrium and growth stability were studied on the basis of a kinetics system theory .

  23. 本文应用非线性随机动力系统理论,从系统稳定性的角度来分析船舶在随机横浪上的运动稳定性,籍此来研究随机海浪中船舶奇异倾覆的机理。

    Basing on the nonlinear dynamics theory , the study of the dynamical stability analysis of ship in random sea is carried out to deduce the capsize mechanism of ship .

  24. 采用大型动力系统理论分析了上下游双调压室系统水位波动稳定问题,并推求出有关计算公式。

    The article deal with application of the theory of decomposition of large-scale , dynamic system in analysis of stability of the up stream and down stream double surge tank system .

  25. 本文利用微分动力系统理论研究了计算机单种病毒的传播规律,特别是研究了考虑计算机病毒潜伏期的病毒传播模型。

    In this paper , by using the theory of differential equations , we discuss the propagation regularity of computer viruses , especially the virus propagation model for the latent period .

  26. 从非线性动力系统理论角度看,相似日预测的实质是对负荷序列中平衡点和准周期行为的预测。

    From the viewpoint of nonlinear dynamic system theory , the substance of load forecasting by the loads in similar days is the forecasting for the behaviors of equilibrium points and quasi-periods .

  27. 本论文主要运用动力系统理论与数值计算方法与来研究复杂网络的同步问题,探讨网络的拓扑结构与同步之间的关系。

    In this dissertation , we apply the theory of dynamical systems and method of numerical computation to studying the synchronization of complex networks , explaining the relations between topological structures and synchronization .

  28. 应用随机动力系统理论,讨论了市场总财富发生改变时市场份额的长期演化行为,并证明了市场份额存在一个稳定不动点。

    Applying theory of random dynamical systems , the long_run evolutionary behavior of market share is discussed when total market wealth is changeable . It is proved that market share has a stable fixed point .

  29. 第一部分(第一章),描述了动力系统理论的产生与发展,并对动力系统复杂性研究的背景和现状做了简要的综述。

    In the first part ( Chapter 1 ), we describe the origination and development of the theory of dynamical systems , and give a brief survey of the background and recent progress of complexity in dynamical systems .

  30. 用动力系统理论导出了正规型方程,确定了该退化点附近的余维二分岔行为,并用数值模拟的方法进行了验证。

    The normal form equation is derived using the theory of dynamical systems , and the behavior of the codimension two bifurcation is determined in the neighborhood of the degenerate point . Numerical simulations are performed to confirm the analytical results .