二次量子化

  • 网络Second Quantization
二次量子化二次量子化
  1. 采用二次量子化方法和酉变换讨论了O3分子在激光场中的多光子激发。

    The multiphoton excitation of O 3 molecules in laser fields is discussed using the second quantization and unitary transformations .

  2. 一维方势阱中粒子的二次量子化处理

    A Second Quantization Approach to the Particle in One-dimensional Square Well

  3. 利用李群方法与二次量子化理论计算了非线性三原子分子的转动振动能级。结果表明,如果将分子的转动与振动均看作是谐振子则可以导致非线性的X3型分子的转动振动能级公式。

    The formula of the rotation-vibration energy levels for asymmetrical molecule X_3 , are obtained by using the theory of lie group , when the rotation and vibration are both considered as the harmonic oscilators .

  4. 导出二次量子化表象的简单代数方法

    A simple algebraic approach to the second quantization representation

  5. Bianch-Ⅰ型宇宙的二次量子化

    Second quantization of Bianchi type-I universe

  6. 论二次量子化与一次量子化的等价性

    A Rigorous Proof of the Equality between the Second Quantization Method and the First Quantization Method

  7. 使用了有限差分方法处理微分算符,并对其进行二次量子化,从而得到了用算符表示的哈密顿量表达式。

    By using the finite difference technique and by introducing the second-quantized operator , the Hamiltonian is expressed in a compact form .

  8. 应用二次量子化方法,较为简捷地得出费米子对的能级公式,并计算了超导电子对的能量。

    This paper , using theoretical method of second quantization , obtains more brifely the form of Fermion pairs energy level , and calculates energy of Cooper pair .

  9. 对于带自旋的全同粒子系,讨论了二次量子化表象中轨道自旋的性质,给出了将它们等效为粒子自旋的条件。

    After exploring the properties of orbital spins in an identical particle system in the second quantization representation , the conditions are given for regarding the orbital spins as the particle spins .

  10. 利用模型哈密顿量、二次量子化法和蛋白质的参数值求出了它的振动能谱,它与红外吸收谱、手指的红外发射谱和激光拉曼谱吻合。

    Utilizing the model Hamiltonian , second quantization and the parameter values of the protein , we have calculated the vibrational energy spectra of the system which are consistent with the experimental results from infrared absorption and radiation and Raman scattering .

  11. 与二次量子化的紧束缚模型的结果进行比较,发现坐标空间研究可以更加准确地反应体系的电子态密度、电荷密度分布等特征。

    By comparing with the results from the tight-binding model with secondary quantization , it is found to be more accurately to study some properties , e.g. , the electronic density of states and the charge density distribution in coordinate space .

  12. 费密面与电化学(二)&二次量子化方法

    Electrochemistry on Fermi Surfaces ( 2 ) & Methods of Second Quantisation

  13. 第二种方法是应用“二次量子化”的方法来计算,这种方法不需要用对易关系,计算简便。

    For the latter , one does not need to use any commutation relation , thus it is very convenient .