巴拿赫空间
- 网络Banach;banach space
-
我们选择了一个特殊的一致凸巴拿赫空间,(?)P,作为研究对象。
We choose a special uniformly convex Banach space , (?) , to study .
-
在一般巴拿赫空间中,构造非线性多值Φ强增生映象方程具误差的Ishikawa,Mann迭代序列,利用多值映象一致连续的性质,给出该序列收敛的一个充分条件。
In general Banach space , Ishikawa and Mann iteration sequence with errors for nonlinear multi-valued Φ - strongly accretive mapping are constructed . By using property of uniform continuity of multi-valued mappings , some sufficient conditions of convergence theorems of Ishikawa and Mann iterative sepuences with errors are given .
-
关于WCD巴拿赫空间和巴拿赫空间的RN性质
On WCD Banach spaces and RN property of Banach Spaces
-
关于巴拿赫空间上的一类谱测度
On a class of spectral measures in an Banach space
-
巴拿赫空间的吸引盆及其应用
The Basin of Attraction in Banach Spaces and Its Applications
-
巴拿赫空间中不放大映射的不动点
Fixed points of a nonexpansive mapping in a Banach space
-
取值于巴拿赫空间的绝对连续集函数
On the Absolute Continuity of the Abstract Set Functions
-
对巴拿赫空间理论中两个定理的新证明
New proofs of two basic theorems in Banach Space
-
巴拿赫空间的可比性及有关问题
On comparability of Banach spaces and related questions
-
巴拿赫空间中的随机增生算子方程
Random Accretive Operator Equations in Banach Spaces
-
本章主要介绍了被广泛应用的欧几里得空间、内积空间、赋范向量空间、巴拿赫空间、希尔伯特空间等,并简单阐述了这些空间之间的联系。
This chapter focuses on the widely used Euclidean space , inner product spaces , normed vector space , Banach space , Hilbert space and briefly discusses the link between these spaces .
-
证明了局部紧且具有可数基的度量空间上的弱下半连续函数和自反的巴拿赫空间上的弱下半连续函数的间断点集合都是第一纲集。
In this paper we prove that a set of discontinuous points of a lower semi-Continuous function on a local Compact and countable metric space or a weak lower semi-continuous function on a reflexive Banach Space is a first Category .
-
文中我们在自反巴拿赫空间内研究了一类广义强非线性变分不等式,通过应用极小极大不等式和辅助原理技巧,广义强非线性变分不等式的某些存在唯一性定理在自反巴拿赫空间内被证明。
This paper studies a class of generalized strongly nonlinear variational inequalities under reflexive Banach space setting . By applying a minimax inequality and the auxiliary principle , some existence uniqueness theorems for solutions to the generalized strongly nonlinear variational inequalities are proved under the Setting of reflexive Banach spaces .