上同调群
- 网络cohomology group
-
CP~n(Q)的加权blowup及陈-阮上同调群
Weighted Blowup of CP ~ n ( Q ) and Chen-Ruan Cohomology Group
-
关于紧Riemann曲面上同调群的一些性质
Some Properties of Cohomology Group on Compact Riemann Surface
-
Loop代数的上同调群
Cohomology Groups of the Loop Algebra
-
Banach代数的n-维上同调群与n-扩张
N-dimensional cohomology groups of Banach Algebras and n-extensions
-
系数在不可约模中Witt代数的限制上同调群
The Restricted Cohomology of Witt Algebras with Coefficients in an Irreducible Module
-
Virasoro代数的上同调群成零条件
On the Vanishing of Cohomology Groups of the Virasoro Algebra
-
对于函子AHom~C、AHOM和coC,我们分别研究了它们的右导来函子并对其上同调群进行了讨论,得出这几个右导来函子之间的联系。
For the functors _AHom ~ C , _AHOM and coC , we study their right derived functors and discuss the relations between them .
-
量子群上同调群的合成因子
Composition factors of cohomology groups for quantum groups
-
同伦群和上同调群的上乘积
Homotopy Groups and cup product of cohomology groups
-
原Heisenberg&Virasoro代数的二上同调群
Second Cohomology Groups of the Original Heisenberg-Virasoro Algebra
-
群中心扩张与二维上同调群通用系数定理
Central extensions of a group and the universal coefficient theorem in the cohomology groups of dimension 2
-
利用胞腔模和单模的上同调群,得到了几个关于胞腔代数半单性的评判准则;
By using the cohomology groups of cell modules and simple modules , we then give some new criteria for the semi-simplicity of cellular algebras .
-
联络空间上同调、规范群上同调继承系与族指数定理
Cohomology descent on connection space and gauge field , family index theorem
-
Tate上同调源于有限群表示理论的研究。
Tate cohomology originated from the study of representations of finite groups .
-
平面上紧致子集的同调群及不动点性质
On homology and fixed point properties of compact plane sets
-
在特征数0的代数闭域上半单纯代数群的上同调群
The Cohomology of Semi - simple Algebraic Groups Over an Algebraically Closed Field of Characteristic O
-
上三角矩阵代数的交叉模和三阶上同调群
Crossed Modules and Third Cohomology of Triangular Lie Algebras
-
第四章中,我们主要研究具有三个点的且不带方向圈的有向箭图的路代数上的完备例外序列的自同态代数的Hochschild上同调群。
Especially , we compute the Hochschild cohomology of endomorphism algebras of complete exceptional sequence of the path algebra whose quiver has 3 vertices and has no orientation .
-
上同调算子也是同伦论的一部分重要内容,可以用来计算空间的同伦群,并且与相应的Eilenberg-MacLane空间的上同调群存在双射。
Cohomology operation belongs to Homotopy theory and can be used to calculate the homotopy group of topological space . Further more it has a bijection relationship with the cohomology group of the corresponding Eilenberg-MacLane space .