矩阵的逆

  • 网络inv;Inverse;matrix inverse
矩阵的逆矩阵的逆
  1. 关于ARMA序列协方差矩阵的逆

    On the inverse of the covariance matrix of ARMA series

  2. 第二类Jacobi矩阵的逆特征问题

    A inverse eigenvalue problem for the second kind of Jacobi matrix

  3. 域Zp上的置换因子循环矩阵的逆阵

    Inversion of permutation factor circulant matrices over Z_p

  4. Toeplitz型矩阵的逆矩阵的快速三角分解算法

    A Fast Triangular Factorization Algorithm of the Inversion of Toeplitz Type Matrix

  5. Pascal三角形矩阵的逆及一个可加集函数关系式

    The Inverse Matrix of Pascal 's Triangular Matrix and an Expression of Additive Set Function

  6. Vandermonde矩阵的逆模与大系统的分散镇定性

    Vandermonde matrix and decentralized stabilization for large scale systems

  7. Vandermonde矩阵的逆矩阵的一种显式算法

    Explicit algorithm of inverse matrix of Vandermonde matrix

  8. 用Cayley-Hamilton定理直接求有理分式矩阵的逆矩阵

    Finding the Inversion of Rational Fraction Matrix by Cayley-Hamilton Theorem Directly

  9. 等差序列构成的Hankel矩阵的逆矩阵三相三线两元件电能表的逆相序判断

    The Inverse Matrices of Arithmetical Hankel Matrices ; The Inverse Phase Sequence Estimation of Two Elements Three Phase Three Line Electric Energy Meter

  10. 1943年,统计学家H·霍特林分析了求解联立方程组的过程(或者可以粗略地看成求解矩阵的逆),他表明随着等式的消除,误差会迅速增长。

    In 1943 the statistician H. Hotelling had analysed the procedure for solving simultaneous equations ( or , roughly equivalently , for inverting a matrix ) and his result made it appear that errors would grow very rapidly as successive equations were eliminated .

  11. 不可约分块Hessenberg矩阵的逆阵

    Inverses of the irreducible block Hessenberg matrices

  12. 利用本公式求n阶矩阵的逆,只要简单地计算n次两个矩阵之积和n次两个矩阵之差即可,避开了计算伴随矩阵和行列式的麻烦。

    When this method is applied to solve the n-order inverse matrix , it is only required to compute the product of two matrices n times and the difference of two matrices n times , thus the troubles on computing the determinant and the adjugate matrix are averted .

  13. 利用线性方程组理论给出了Lagrange插值公式的一个构造性证明,得到了Vandermonde矩阵的逆矩阵的一种显式算法。

    A constructive proofs for Lagrange interpolation formula is given by means of linear equations system , and an explicit algorithm for the inverse matrix of the Vandermonde matrix is obtained .

  14. 讨论了GF(p)上线性方程组的求解,给出了简化形式下GF(p)上线性方程组的通解形式,并给出了GF(p)上某些常见满秩矩阵的逆的具体表达式。

    Solution of linear equations on GF ( p ) is discussed , general solution of linear equations in simplified form on GF ( p ) is given , concrete expressions of inverse of some common matrices onGF ( p ) are given .

  15. 由于广义预测控制算法中需要求解Diophantine方程并进行矩阵的逆运算,计算量较大。

    Implicit generalized predictive control algorithm which recognizes the controller parameter directly using the recursion least squares method is researched to avoid solving the diophantine equation and the matrix inverse .

  16. 该算法不需要求解矩阵的逆,只需求解复杂度较低的迭代系数,与经典的线性最小均方误差(MMSE)算法相比,显著降低了计算复杂度。

    The algorithm does not require to solve for the matrix 's inverse , save for a much less complex iterative parameter . The new algorithm reduces the complexity remarkably compared with the classical linear MMSE algorithm .

  17. 它不同于常用的因子旋转方法,其主要方法是将斜交因子变换矩阵的逆矩阵T-1中的行向量单独考虑,使其有尽可能多的出现0(或接近于0)。

    The main step in this method is to consider separately the line vectors X of the transformation matrix T - 1 . It differs from general rotation of factors .

  18. 通过求解Vandermonde矩阵的逆矩阵,使CAD/CAM曲面造型中常常遇到的反求Bezier曲面控制点问题得到有效的解决。

    The inverse solving of the Bezier surface control points is often to be dealt with in CAD / CAM surface modeling and this is effectively worked out here by solving the inverse matrices of the Vandermonde matrices .

  19. 利用Cartan矩阵的逆矩阵,得到了单李代数g任一不可约表示的最高权关于g的素根的展开式,并得到了Dynkin所给的单李代数r值的表达式。

    By using the inverse matrix of Cartan matrix , the expansion of the highest weight of any irreducible representation for the simple Lie algebra g by its simple roots is given , and the expression of given by Dynkin for the simple Lie algebra is also obtained .

  20. 由于S-B算法是一种递归的列表方法,并且不需要求矩阵的逆,因此它能通过处理大量的采样点得到有理插值函数,同时避免奇异值问题。

    Since the S-B algorithm is a recursive tabular method and requires no matrix inversion , it can process a large number of sampling data for obtaining a rational interpolation function without suffering from singularity problems .

  21. 该算法不涉及矩阵的逆运算和除法运算,不受条件aii≠0的限制,对于严重病态的线性系统也能得到高精度解。

    The approach did not involve the inverse matrix operation and division operation of matrix , and was not restricted by the condition of a_ ( ii )≠ 0 . The high accuracy solution of a singular matrix was also obtained .

  22. 一类特殊矩阵的逆矩阵及其特征值算法

    Algorithm on Inverse Matrix and Characteristic Value of a Special Matrix

  23. 关于对角因子循环矩阵的逆矩阵算法

    Algorithm to Seek Inverse Matrix of the Diagonal Factor Circulant Matrices

  24. 关于λ-矩阵的逆矩阵的一种新求法

    A New Solution to the Inverse Matrix of λ - matrix

  25. 一种求摄动矩阵的逆矩阵的方法

    A Method to Seek the Inverse Matrix of the Perturbation Matrix

  26. 三对角矩阵的逆元素表示式的新证明

    A Note on an Expression for Inverse Elements of Tridiagonal Matrix

  27. 完全分配格上的矩阵的逆及广义逆

    Inverse and generalized inverse of matrices over completely distributive lattice

  28. 循环矩阵的逆矩阵与分解定理

    The inverse matrices and the decomposition theorem of cyclic matrices

  29. 二元对称循环矩阵的逆矩阵

    On the inverse matrix of the binary symmetry cyclic matrix

  30. 利用合同变换求循环矩阵的逆及其行列式的值

    Finding the inverse of cyclic matrices and the values of their determinants