电荷转移跃迁

  • 网络charge transfer transition;IVCT
电荷转移跃迁电荷转移跃迁
  1. 红宝石、蓝宝石、翡翠的呈色是过渡金属离子(如铬、铁、钛等)d-d电子跃迁和电荷转移跃迁等因素共同作用的结果。

    The colorations of ruby , sapphire , and emerald result from the d-d electron transition and charge transfer transition of transition metal ions such as chromium , iron , titanium etc.

  2. 用过渡态理论计算了部分光学跃迁和电荷转移跃迁的能量。

    Energies of some optical transitions and the charge transfer transition are calculated based on the transition state theory .

  3. 首次利用MCD研究了聚(4-乙烯基吡啶)&CO~(3+)配合物的电子跃迁及电荷转移跃迁。

    In the present report , we study the electron transitions and charge transfer transitions of PVP-Co ~ ( 3 + ) complex by MCD method .

  4. 结果表明,纳米晶TiO2样品在波长为380nm处出现的表面光伏响应与锐钛矿型TiO2的表面电子结构有关,属于带-带电荷转移跃迁;

    The results showed that the surface photovoltage ( SPV ) response appearing at 380 nm of the samples was closely related to the surface electron structure of anatase-type TiO_2 nanoparticles , which belonged to a band-band transition ;

  5. 峰值为31.5×10~3cm~(-1)的吸收带则由金属&配位体电荷转移跃迁构成。

    The band at 31.5 × 10 ~ 3cm ~ ( - 1 ) consists of ligand-Metal charge transfer transitions .

  6. 利用磁圆二色谱研究PVP-Co~(3+)配合物的电荷转移跃迁

    The study of charge-transfer transition of ploy ( 4-vinylpyridin ) - co ~ ( 3 + ) complex by magnetic circular dichroism

  7. 本文从观察光的吸收谱变化觉察到分子吸附在银胶、银镜上所出现的电荷转移跃迁;

    The band of charge transfer transition is detected in optical absorption spectra when molecules are adsorbed on silver surface in silver sol and silver mirror .

  8. 本文通过理论计算揭示共轭体系的分子间光诱导电子转移的机理,用连续介质模型估计电荷转移(CT)跃迁过程的溶剂化能,探讨光诱导电子转移的动力学问题。

    In this work , we intended to study the mechanism of photoinduced intermolecular ET reaction , including the estimation of the solvation energy in charge transfer ( CT ) transitions , and investigation of the kinetics of photoinduced ET.

  9. 观察到一系列分子间电荷转移所形成的双分子激子谱带,显示了斯塔克光谱技术在探测淹没于弗伦克尔(Frenkel)激子带下面的微弱电荷转移跃迁方面具有独特的优点和很高的灵敏度。

    A series of intermolecular charge transfer ( CT ) spectral bands was observed , which demonstrated the unique advantage and high sensibility of Stark spectroscopy in revealing weak CT transitions buried under strong Frenkel exciton bands .