生物材料科学

  • 网络Biomaterials Science
生物材料科学生物材料科学
  1. 聚合物基药物输送体系在生物医学和药物控释领域的应用已经引起高分子化学、医药和生物材料科学领域诸多研究者的关注。

    Polymer-based drug delivery systems for biomedical applications and controllable release have attracted significant attentions in polymer chemistry , pharmaceutics , and biomaterials science .

  2. 近年来,随着细胞生物学、生物材料科学、化学及工程学突飞猛进的发展和各学科间的交叉渗透组织工程学(TissueEngineering)作为一门新兴边缘学科应运而生,并得到了迅猛发展。

    In recent years , because of the enormous development and intersection between cytobiology and biomaterial engineering science , tissue engineering has forged ahead rapidly as a novel frontier science .

  3. 21世纪我国生物材料科学展望

    Prospect for Biomaterial Science in the 21st Century in China

  4. 寻求修复各种原因引起的骨组织缺损、畸形的新型材料和技术一直是生命科学和生物材料科学领域的一个重要课题。

    The research of new materials and techniques to repair defect and deformity of bone tissue , which caused by various disease , is an important challenge in life science and biomaterial science .

  5. 随着基因工程技术和生物材料科学的不断发展,以及对如何获得具有特殊功能胶原蛋白研究的不断深入,使其成为第三代生物材料中倍受瞩目的成员之一。

    With the development of gene engineering and biomaterial technologies , and the incessant studies on the technique to obtain the proteins with special functions , the collagen protein has been one of the third generation biomaterials that attract more attention than others .

  6. 近代高新技术的成就促进了分子电子学这门涉及化学、物理、生物、材料科学及电子工程学的交叉学科的建立。

    It is the modern high technology that promote the foundation of molecular electronic , which is a cross-discipline involved with chemistry , physics , biology , material science and electronics .

  7. 目前,中子散射技术在物理、化学、化工、生物和材料科学等研究领域的应用已经获得了许多用其他方法无法得到的知识。

    The applications of neutron scattering technology in the areas such as physics , chemistry , chemical industry , biology , and material science have already provided rich information that was not accessible via any other method .

  8. 随着生物医药材料科学的不断发展,可控药物释放体系已成为药学领域发展的新方向,其研究主要集中于新的药物载体的设计和新的控制释放的方式的使用这两个方面。

    Recently , controlled drug release systems have become the main development direction in the area of pharmaceutical study based on the developing new biomedical materials . The study is focusing on the design of new drug carriers and new controlled release ways .

  9. 经过二十多年的发展,单分子光谱学已经逐渐从低温光谱方法演化为一个通用的工具,被广泛用于研究物理、化学、生物和材料科学中的各类相关问题。

    Over the past twenty years , single-molecule spectroscopy has evolved from a specialized variety of optical spectroscopy at low temperatures into a versatile tool used to address a broad range of questions in physics , chemistry , biology , and materials science .

  10. 此外,由于高聚物空心纳米球结构在包覆性能、可控渗透性和表面功能性上的优势,使得其在化学、生物和材料科学方面的应用受到了相当大的关注。

    Furthermore , polymeric hollow nanospheres have attracted considerable research attention due to their large variety of applications in chemistry , biotechnology , and materials science . The advantages of polymeric hollow nanosphere include its encapsulation property , controllable permeability , and surface functionality .

  11. 由于Schiff碱在合成上具有灵活性,跟金属离子很容易进行配位,该类配合物结构多样,性质特殊,在化学、生物以及材料等科学领域都具有广泛的应用前景。

    Schiff base complexes have various structures and peculiar properties , so the use foreground of these complexes is promising in many fields , such as bioactivity catalysis and material , owing to their easy preparation , well coordinate capability to the transition metal ions .

  12. 生物技术和材料科学的交叉结合已经成为近年来的热点,在众多的研究中涌现出了很多新的概念及方法。

    In recent years , the intersection between biotechnology and materials science has been the focus of researchers in which there are many novel approaches emerging .

  13. 该类配合物结构多样、性质特殊,在化学、生物以及材料等科学领域都具有广泛的研究前景。

    Owing to their various structures and peculiar properties , the use foreground of these complexes is also promising in many fields , such as catalysis , bioactivity and material .

  14. 随着相关理论和计算方法的飞速发展,基于第一性原理的密度泛函理论被广泛的应用在量子化学、生物化学以及材料科学等领域。

    With the progress in density functional theory ( DFT ) and its numerical methods , DFT based first-principles calculation has been widely used in quantum chemistry , biochemistry and material science .

  15. X射线位相衬度成像是进行生物、医学和材料科学研究的一种新的重要手段。

    X-ray phase-contrast imaging is an important diagnostic tool in medicine , biology and materials science .

  16. 近年来X射线相位衬度成像技术作为一种新的成像方式凭借其空间分辨率高的优势已经成为生物、医学以及材料科学等领域一种新的独具本领的研究工具。

    Recently the technique of phase contrast imaging has become an useful and special tool in biology , material science etc. due to its high resolution .

  17. 多金属氧酸盐(POM)是一类结构独特、性质多样的无机簇状化合物,它在工业催化剂、生物、药学、材料科学等领域中有重要的应用价值。

    Polyoxometalates ( POM ) possess good redox properties and structural versatility and have been widely applied in many fields such as medicine , catalysis , and materials sciences .

  18. 生物医用材料是材料科学技术的一个分支,相关研究涉及生物医学领域中最基本的科学问题。

    Researches on biomedical materials , a significant area of materials science and technology , are involved in the essential topics in biomedicine .

  19. 近年来,随着生物纳米技术、材料科学、电磁学等学科的飞速发展,纳米粒靶向治疗越来越引起广大学者的关注。

    Recently , with the fasten development of biology nanotechnology , materials science and electromagnetism , many scholars pay more attention to the nanoparticle targeted therapy .

  20. 探索基于植物蛋白的新型亲水凝胶及相关制品,不仅有利于提升植物蛋白制品的加工技术水平进而拓宽其应用范畴,而且对研发新型蛋白基生物材料具有重要的科学意义。

    Investigate novel vegetable protein-based hydrogel and related products , not only enhance the level of processing technology and then expand its scope of application , but also have important scientific significance for the development of new protein-based biomaterials .

  21. 从组织工程材料学角度研究和开发可控生物降解材料是生物材料科学和工程的主要任务之一。

    According to material of tissue engineering , the research and exploiture of the controllable material of biodegradation is one of the main missions of biomaterials ' science and engineering .

  22. 研究具有生物活性高分子生物材料是高分子科学与生命科学之间相互渗透产生的一个重要边缘领域,是近50年以来高分子科学发展的一个重要特征。

    The research of macromolecule biomaterials having biological activity is an important area which produced between macromolecule science and life science and is also an important characteristic of the improvement in macromolecule science .

  23. 明胶微球具有许多优良的物理、化学和生物性能,被广泛应用于医药工程、生物技术、材料科学和电子信息产业等领域。

    Gelatin microspheres ( GMs ) have been known to display a variety of applications in different technological fields including medicine , biology , chemical and electronic information industry because of their diverse and excellent physical , chemical , biological and amphoteric properties .