混沌吸引子

  • 网络Chaotic attractor;Chaos attractor
混沌吸引子混沌吸引子
  1. 混沌吸引子的DSPBUILDER设计方法

    Design Method for Chaotic Attractor Based on DSP Builder

  2. Icon对称群映射的广义M集与混沌吸引子的研究

    Research on General M Set and Chaotic Attractor from Icon Symmetric Group

  3. D4平面排列映射的混沌吸引子与广义充满J集

    Chaotic Attractor and General Filled-in J Set from Plane Tiling Mapping with D_4 Symmetry

  4. 电压模式控制Buck变换器中的混沌吸引子重构技术

    Reconstruction of Chaotic Attractor in Voltage-mode Controlled Buck Converter

  5. 一种恒Lyapunov指数谱混沌吸引子及其Jerk电路实现

    An attractor with invariable Lyapunov exponent spectrum and its Jerk circuit implementation

  6. 中国FDI的混沌吸引子检测及非线性动力学预测&基于logistic模型

    The Test for Chaotic Attractor in China ′ s FDI Inflow and Its Nonlinear Dynamic Prediction : Based on Logistic Models

  7. 根据参数a,b,c的不同取值,用Matlab画出混沌吸引子,并分析了系统平衡点的稳定性。

    For the value of a , b , c , draw the chaos attractor of the system through Matlab , then analyse the stability of the system .

  8. 通过深入研究其混沌吸引子的形状、关联维数及最大Lyapunov指数,发现这些混沌特征数对电力短期负荷预测具有重要意义。

    Chaotic attractor and its correlation dimension and maximum Lyapunov exponent have important influence on power short-term load forecasting .

  9. 双曲极限圆映射的混沌吸引子及充满Julia集

    Chaotic Attractors and Generalized Filled - in Julia Sets from Mapping with Hyperbolic Limit Disc

  10. ENSO事件在相空间中的轨迹特征及其混沌吸引子的维数

    Characteristic trajectory of ENSO evidence in phase space and dimension of its chaotic attractor

  11. 基于Lorenz混沌吸引子的数字水印

    Digital watermark based on Lorenz chaotic attractor

  12. 从理论上分析了混沌吸引子的产生机理,为了验证混沌的产生计算了系统的Lyapunov指数。

    The Multi-scroll chaos generation scheme is analysed theoretically and the Lyapunov exponents are computed in order to verify the chaos generation .

  13. 多涡卷Jerk混沌吸引子的EWB实现

    Multi-Scroll Jerk Chaotic Attractors and Its EWB Implementation

  14. 本文还对Wolf算法进行改进,克服了其在计算较复杂的混沌吸引子时所遇到的困难。

    We also improve the Wolf s algorithm , and overcome its handicap in calculating the largest Lyapunov exponent from the complex chaotic attractor .

  15. 以Lorenz系统为例,将其混沌吸引子视为网络节点。

    We take Lorenz oscillator as an example and regard its chaotic attractor as a node of the network .

  16. 我们的数值结果还说明在V型阵发前奏锁相阶梯之后出现的混沌吸引子就是映象函数的不连续边界的象集的归宿。

    Our numerical investigation also indicates that the chaotic attractor appeared after the prelude phase-locking staircase was end-result of the set of the images of the discontinuous border of the system function .

  17. 提出在高阶Jerk系统中产生多涡卷混沌吸引子的一种电路设计与实现新方法。

    This paper proposes a novel circuit design and implementation approach of generating multi-scroll chaotic attractors from high-order Jerk systems .

  18. 理论分析表明,稳定的周期轨道被嵌在Melnikov混沌吸引子中。

    A theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractors .

  19. 给出了在四阶和五阶Jerk电路中产生多涡卷混沌吸引子的计算机模拟和硬件实验结果。

    Finally , the computer simulations and hardware implementations are given to generate multi-scroll chaotic attractors on the forth-order and fifth-order general Jerk circuits .

  20. 根据高阶Jerk方程,构造了一组具有参数控制的阶跃函数序列,在此基础上设计了产生多涡卷混沌吸引子的高阶广义Jerk电路。

    According to high-order Jerk equations , multi-scroll high-order general Jerk circuits are designed by constructing a sequence of step functions with parameter control .

  21. 对镇定一嵌入在Lorenz混沌吸引子内的不稳定平衡点上的混沌轨道提出了一种利用进化RBF网控制混沌系统的新方法。

    A new method of chaotic control with evolutionary RBF neural network is presented for stabilizing chaotic orbits on an unstable equilibrium embeded within a Lorenz chaotic attractor .

  22. 离散Hopfield神经网络存在混沌吸引子,基于此可以构造新的加密算法。

    A perfect block cipher scheme with cipher block chaining model is described for a symmetric encryption algorithm based on the chaotic attractors in discrete Hopfield neural networks .

  23. 并且对该系统的耗散性、平衡点、Lyapunov指数以及混沌吸引子进行分析,结果表明其具有丰富的动力学特性,有明显的超混沌特征。

    And we analyze the dissipation of the system , equilibrium , Lyapunov exponent and chaotic attractors . The results show that it has a rich dynamics and obvious characteristics of hyper-chaotic .

  24. 四阶MCK电路的主要特点是产生双涡卷超混沌吸引子。

    The feature of the MCK circuit is that it can generate double-scroll hyperchaotic attractor .

  25. 计算机仿真结果表明:该模型比BP算法训练的神经网络模型能更好地重构混沌吸引子,调整网络权值即可产生多种混沌序列。

    Experimental results show that this EP trained MLP model can generate a chaotic series , whose attractor can be reconstructed better than that generated by the BP trained MLP model and which generates many chaotic sequences by changing weights of this MLPs very easily .

  26. 时空混沌吸引子的维数和Kaplan-Yorke猜测

    Dimension of Spatiotemporal Chaotic Attractors and the Kaplan-Yorke Conjecture

  27. 在分析常用的计算最大Lyapunov指数小数据量法的基础上,研究了混沌吸引子时间轨道的不可逆特性,提出基于后向搜索和双向搜索计算最大Lyapunov指数的推广小数据量法通用经验公式。

    After analyzing recently common methods of calculating the largest Lyapunov exponent from small data sets , the irreversible property of time trajectories is studied and extended method for calculating the largest Lyapunov exponent of chaotic system is proposed based on backward or bi-direction search phase point .

  28. 1963年E.N.Lorenz偶然在数值试验中发现了第一个混沌吸引子,从那以后混沌理论在许多领域中得到了广泛的发展。

    E.N.Lorenz firstly discovered chaotic attractor in numerical experiment in 1963 . It has obtained widespread development in many fields .

  29. 通过对重构后混沌吸引子的形状进行对比分析,指出基于单变量时间序列的相空间重构方法中存在信息不完备等弊端,为了解决这一问题,提出基于Bayes估计的融合相空间重构方法。

    Through the analysis of chaotic attractor of univariate time series , the information reconstructed from univariate time series is imperfect , which is the abuse of phase space reconstruction from univariate time series . Then the method of phase space reconstruction based on Bayes estimate theory is presented .

  30. 自20世纪60年代美国气象学家E.N.Lorenz在数值实验中偶然发现了第一个混沌吸引子以来,混沌在众多领域中获得了巨大而深远的发展。

    In 1960s ' , an American meteorologist , E. N. Lorenz , found the first strange attractor , the so-called Lorenz attractor , in a numerical experiment .