最大公因式
- 网络the greatest common factor;the greatest common divisor;GCD
-
介绍了一种利用数域上矩阵的初等行变换求一组一元n次多项式的最大公因式的方法。
A solution to the greatest common divisor for a class of polynomial with one un-known is derived by using the elementary row transformation of matrix in digital domain .
-
文章从辗转相除、矩阵的初等变换以及矩阵的斜消变换等不同角度给出了一元多项式的最大公因式的不同求法。
In this paper , we obtain several solutions to the greatest common divisor of polynomial of one indeterminate by using the division algorithm and elementary transformation and oblique elementary transformation of matrix .
-
求多项式最大公因式的C语言编程处理
The C Language Programing for Extracting the Maximum Common Factor of A polynomial
-
利用矩阵变换求n个多项式的最大公因式及判断复常系数线性系统的稳定性
Calculating Greatest Common Divisor of n Polynomials and Judging Stability of Linear System with Constant Complex Coefficients Through Matrix Transformation
-
最大公因式的矩阵解法
A Matrix Method For Solving of The Greatest Common Factor
-
最大公因式为倍式和的方法
The Method of Greatest Common Equation as Times Sum
-
用变换矩阵法求最大公因式
To seek highest common Factor with Changing Matrix Method
-
求最大公因式的初等变换法
Elementary Transform Method of Extracting Greatest Common Factor
-
求几个多项式的最大公因式
Finding the Greatest Common Factor of Several Polynomial
-
多项式最大公因式的矩阵求法
Matrix Method of Getting Polynomial Greatest Common Factor
-
求解二元多项式最大公因式的结矩阵算法
The Resultant Matrix Algorithm for Solving the Greatest Common Factor of Two variable Polynomials
-
给出求多项式组的最大公因式的一种简单方法&矩阵变换的方法,并给出算法。
Division algorithm is a common method to evaluate the greatest common formula of multinomial .
-
基于矩阵斜消变换的最大公因式求解
A Way to Evaluate the Greatest Common Factor Based on the Oblique Elementary Operation of Matrix
-
给出一种求解二元多项式最大公因式的新方法。
Thus we gave a kind of new method for solving the greatest common factor of two-variable polynomials .
-
该方法仅利用结矩阵便可求得多项式的最大公因式。
Only the resultant matrix is needed to solve the greatest common factor of polynomials in this method .
-
有理数域上两个多项式的最大公因式的确定
On the Determination of the Biggest Common Factor of the Two Polynomials in the Scope of Rational Numbers
-
本文利用矩阵的初等变换讨论了一元多项式最大公因式的求法。
The use of the elementary transformation matrix discussed the one yuan polynomial greatest common factor the matrix law .
-
关于多项式最大公因式的进一步探讨两个多项式阵最大公因子的计算
Further Study about Maximum Common Factor of Multinomial A NEW METHOD FOR FINDING THE GREATEST COMMON DIVISOR OF TWO POLYNOMIAL MATRICES
-
λ&矩阵的最大公因式与不变因子间的关系及其性质
Relation Between the Greatest Common Factor of the λ - Matrix and Invariant Factor and the Greatest Common Factor 's Properties
-
证明了等价关系族构成的有界格,建立了函数复合的最大公因式、最小公倍式等概念,并对其存在唯一性作出证明。
This paper establishes the concept of maximal common factor and minimal common multiple for compound function and proves their unique existence .
-
求两个多项式的最大公因式,可以用辗转相除法及分解因式法。
Generally speaking , division algorithm and factor resolution can be used to find the greatest common factor of the two multinomial .
-
本文给出一种求任意有限个不全为零的多项式的最大公因式的方法。
This paper gives to seek a kind of method of highest common factor of polynomialS that wilfully finite ones are not complete zeroes .
-
利用多项式矩阵的行初等变换给出了求几个多项式的最大公因式的新方法,并给出了这种方法的具体应用。
By using the row elementary opration the matrix method of calculating the greatest common divisor of several polynomials is given with concrete applications .
-
本文给出用矩阵的行初等变换求两个多项式最大公因式的方法。
In this paper the author gives a new method to solve the greatest common formula of two multinomials elementary transformation of raws of the matrix .
-
利用矩阵的初等变换,给出了两个多项式的最小公倍式、最大公因式及其系数多项式的统一求法。
In this paper , we get a seeking unified method of the least common multiple , the greatest common factor and coefficients polynomial by implementing elementary row transformation in a polynomial matrix .
-
应用矩阵初等变换的一些性质解决有限维向量空间中若干问题和求两个多项式的最大公因式。
The purpose of this paper is to use properties of elementary transformation of matrix to solve some problems of finite dimensional vector space and to get the greatest common factor of two polynomials .