多元多项式

  • 网络multivariate polynomials
多元多项式多元多项式
  1. 多元多项式函数的三层前向神经网络逼近方法

    Approximation Method of Multivariate Polynomials by Feedforward Neural Networks

  2. 一类多元多项式的有效赋值方法

    Efficient evaluation to one form of multivariate polynomials

  3. 运用多元多项式的回归分析方法给出了螺旋桨推力系数KT值的一种精度较高的数学表达式。

    The mathematical expressions with high accuracy of propeller thrust coefficient are given by the regression analysis .

  4. 多元多项式理论在NPC逆变器消谐中的应用研究

    Research on 3-level Inverter Harmonics Elimination Using the Theory of Multivariable Polynomials

  5. 本文用多元多项式回归分析方法给出了螺旋桨设计图谱(Bp~(1/2)~δ图谱)的一种精度较高的数学表达形式。

    The mathematical expressions with high accuracy for propeller design dia-grams (( B_p ) ~ ( 1 / 2 )~δ diagrams ) are given by the regression analysis .

  6. 系数不准确的多元多项式因式分解的MAPLE实现

    Implementation of Factorization of Multivariate Polynomial with Inaccurate Coefficients by MAPLE

  7. 本文将Taylor解法进一步用于非线性的疲劳多裂纹扩展方程的求解,对非线性项可以表达为多元多项式的问题,完善了Taylor级数方法的理论。

    This paper has established the Taylor series method theory for nonlinear problems , whose nonlinear items can be expressed by multi polynomials .

  8. 首先给出了二元的情况,然后推广到了一般多元多项式乘积的情况,这为计算多维卷积和多维DFT提供了新的途径。

    Secondly was got it was to generalized the case of multi-variable polynomial , which provided a new method of computing M-D DFTs and M-D convolutions .

  9. 多元多项式乘积的FPT算法

    The FPT Algorithm of Multi-variable Polynomial Multiplication

  10. 它自动建立一个预测误差较小的基于Chebyshev多项式的多元多项式模型,它的预测效果优于传统多元多项式模型。

    It automatically builds a multinomial model based on Chebyshev 's polynomial with less predicting error . Its predicting efficency is better than that of traditional multinomial model .

  11. 当模M1(z1),M2(z2)是可约多项式时,我们建立了一系列多元多项式变换成立的充分必要条件,并且证明了这种变换具有循环卷积特性(CCP)。

    As can be seen , we established a series of necessary and sufficient conditions of these transforms when the modul M1 ( z1 ), M2 ( z2 ) are reducible polynomials and showed that in this case the transforms have the cyclic convolution property ( CCP ) .

  12. 这些和式包括不完整区间上的特征和、多元多项式特征和、hyper-Kloosterman和、带特征的指数和、Dedekind和以及它们的推广和式。

    These summations are Character sums over incomplete intervals , Dirichlet characters of polynomials in several variables , Exponential sums with characters , hyper-Kloosterman sums , Dedekind sums and their generalized sums .

  13. NTL库是开放源代码的自由软件库,它提供了大整数的运算,一元多项式的运算等,遗憾的是,它只提供了一元多项式因式分解,没有提供多元多项式因式分解。

    NTL is a GNU library and the source code is open for us . It can operate large integer and univariate polynomials , unlucky , it only has the univariate polynomial factorization , no multivariate polynomial factorization .

  14. 给出了可被应用于R3中多元多项式插值的立方体迭代插值公式,此公式可看作是应用于一元插值的Aitken插值公式的一种推广。

    In this paper , we give the cube iterative interpolation formula that can be applied to the multi-variate polynomial interpolation in R3 . This formula can be considered one of the generalizations of the Aitken interpolation formula that has been applied to the one-dimension interpolation .

  15. 本文详细讨论一种基于多元多项式乘积的二维循环卷积算法,并与其快速多项式变换(FPT)算法进行了比较,比较结果显示该算法具有明显的优越性。

    In this paper , we discussed a two-variable cyclic convolution algorithm based on two-variable polynomial multiplication , and compared it with the fast polynomial transform ( FPT ) algorithm . As a result , this kind of algorithm is efficient in computation of two-variable cyclic convolutions .

  16. 淡水渔业的多元多项式回归模型及其应用

    The multi-variable multinomial regression model and its use in freshwater fishery

  17. 矩阵多元多项式的带余除法及其应用

    Pseudo - Division Algorithm for Matrix Multivariable Polynomial and Its Application

  18. 一种是多元多项式温度补偿,另一种为神经网络温度补偿方法。

    One is polynomial , the other is Neutral Network .

  19. 基于代数神经网络的多元多项式不可约判定及学习算法

    Irreducibility Testing and Learning Algorithms of Multivariate Polynomials Based on Algebra Neural Networks Model

  20. 多元多项式变换及其在计算多维数字卷积中的应用

    Polynomial Transforms of Many Variables and Their Applications of the Computation of Multidimensional Convolutions

  21. 通过多元多项式近似因式分解算例分析可以看出,新模型刻划出在符号计算意义下精确计算与近似计算的本质与联系。

    Through multivariate polynomials approximate factorization , the essences and relationships between approximate calculation and accurate calculation are explained .

  22. 定义了多元多项式的存贮结构,使得多元多项式的输入输出格式与习惯的书写格式完全一致;

    Polynomical store struct is defined . Format of input and output consistent with that written by hand is made .

  23. 本文试图从多元多项式回归模型的特性出发,研究其在渔业技术经济分析中的应用。

    The article gives a description of the multi-variable multinomial regression model and discusses its use in fishery technical and economic analyses .

  24. 多元多项式齐次方程组的一个解法

    A construction in solving systems of homogeneous equations of multivariate-polynomials a solution to a class of systems of linear first order homogeneous equations

  25. 将一元整系数多项式有理根的一个结论在多元多项式上进行了推广,从而得到多元多项式因式分解的一种方法。

    A conclusion on rational root of one variable polynomial with integer coefficient is generalized and a method on multivariate polynomial factorization is put forward .

  26. 前者归结为平方和形式函数无约束极小化问题,后者归结为多元多项式函数无约束极小化问题。

    The former belongs to that of the unconstraint minimization of quadratic function , the latter belongs to that of the unconstraint minimization of multivariable polynomial .

  27. 值得注意的是,这两种方法具有完善的求解多元多项式组的理论过程,其中利用结式法能够得到两个变量之间的解析表达式,在电力系统其他研究领域有潜在的应用价值。

    It is worth noting that both methods show perfect methodology on solving polynomial equations and resultant method can give out analytical expressions among two variables .

  28. 本文比较了多元多项式与一元多项式的可除性,讨论了最大公因子、唯一因子分解等问题。

    The paper compares the divisibility of polynomial in several elements with the divisibility of polynomial in one element , and discusses problems about the greatest common divisor and the unique factorization .

  29. 然而,等时中心问题的研究迄今还没有一个成熟的方法,并且,由于其中涉及大量多元多项式的代数簇计算,计算机的计算能力也限制着此问题的发展。

    However , there is no general method to investigate the problem of isochronous centers and the computation power of computers restricts the development of this problem because many computations are involved .

  30. 多变量公钥密码是一种新型快速公钥密码,它的安全性是基于求解有限域上多元多项式方程组的困难性。

    The multivariate public key cryptosystem is a new and fast public key cryptosystem , and its security assumption is based on the difficulty of solving a set of multivariate polynomial equations over a finite field .