数学哲学

  • 网络Mathematical Philosophy;the philosophy of mathematics
数学哲学数学哲学
  1. 数学哲学与数学有效性的研究&答《科学技术与辩证法》中的商榷文

    The Study of Philosophy of Mathematics and the Effectiveness of Mathematics

  2. 当代数学哲学的语境选择及其意义

    Choice of Contextual Interpretation in Contemporary Philosophy of Mathematics and Its Significance

  3. 中日数学哲学比较研究

    The Comparative Research on Mathematical Philosophy in China and in Japan

  4. 数学哲学在数学教育中的应用

    The application of the philosophy of mathematics in Mathematical Education

  5. 从数学哲学的角度看柏拉图问题

    The Plato 's Problem in the View of the Philosophy of Mathematics

  6. 逻辑主义:基于认知分析的数学哲学

    Logicism : The Philosophy of Mathematics Based On Cognitive Analyses

  7. 直觉主义数学哲学研究及其对数学素质教育的启示

    Study on intuitionism in mathematical philosophy and its inspiration for mathematics education

  8. 试论拉卡托斯数学哲学思想的产生背景和思想根源

    The formation of Lakatos ' mathematical philosophy : its background and ideological roots

  9. 数学哲学:20世纪末的回顾与展望

    Philosophy of Mathematics : Review and Prospect at the End of the 20th Century

  10. 数学哲学:一个充满迷惑的领域

    Mathematic Philosophy , a Field Full of Puzzles

  11. 哥白尼革命的另一种解读&从数学哲学的角度看

    A New Interpretation of the Copernican Revolution in View of the Philosophy of Mathematics

  12. 彭加勒的数学哲学思想

    Henri poincare 's thoughts of philosophy of Mathematics

  13. 数学哲学观解决什么是数学的问题,是数学教学理论的基础。

    The views of mathematics philosophy are the base of the mathematics teaching theories .

  14. 不可或缺性论证与反实在论数学哲学

    The Indispensability Argument and Anti-realistic Philosophy of Mathematics

  15. 论数学哲学中的直觉主义思想

    On the Intuitionistic Thought in Mathematical Philosophy

  16. 极限概念的数学哲学思维剖析

    On the Philosophically Mathematical Thinking of Limit

  17. 数学哲学研究的一项新成果&简评《数学哲学引论》

    A New Outcome of Mathematical Philosophy study & Briefly to review 《 Mathematical Philosopy Introduction 》

  18. 从“集合”的由来演化看数学哲学的基本问题

    Regarding the basic issue of Mathematic Philosophy from the origin and evolution of " set "

  19. 而维特根斯坦讲的是数学哲学,他的问题是,数学到底是什么东西。

    But Wittgenstein 's course was on the philosophy of mathematics ; what mathematics really was .

  20. 从数学哲学到数学文化哲学&数学认识的文化视野

    From Philosophy of Mathematics to Philosophy of Mathematics Culture ── Cultural Field of Vision of Mathematics Recognition

  21. 柏拉图问题的产生和回答与古希腊和古巴比伦数学哲学密切相关。

    The origin and the answer of the Plato 's problem was related to the philosophy of mathematics .

  22. 徐光启的数学哲学思想纪念《几何原本》中译400周年一部厚积薄发的力作评何光渝《20世纪贵州小说史》

    Xu Guangqi s mathematics philosophical thinking & Translate 400 anniversaries in souvenir " geometry copy of the first edition ";

  23. 1933年3月,艾伦读了伯特兰•罗素的《数学哲学引论》,这本书就试图解决这个关键问题。

    In March 1933 Alan acquired Bertrand Russell 's Introduction to Mathematical Philosophy , which addressed itself to this central question .

  24. 数学哲学、数学史与数学教学有机结合,已成为当今世界数学教学的热点问题。

    The combination of mathematics philosophy and mathematics history with mathematics teaching has become a hot topic of mathematics teaching in the world .

  25. 本文通过对当时数学哲学及科学哲学研究状况的分析,在一个广阔的背景下探讨了拉卡托斯数学哲学思想形成和发展的思想根源。

    The present paper attempts an analysis of the formation of Lakatos ' mathematical philosophy and its ideological roots against their academic background .

  26. 在数学哲学中,认为数学是从逻辑推导出来的一种论点。

    In the philosophy of mathematics , the thesis that all mathematical propositions are expressible as or derivable from the propositions of pure logic .

  27. 数学哲学中的直觉主义学派高度重视直觉和个人的创造性思维在科学实践中的作用,这具有积极的意义;

    This paper discusses the intuitionistic theory and thought in mathematical philosophy . Intuitionism highly values intuition and personal creative thinking in scientific practice .

  28. 由理性主义到经验主义是现代数学哲学研究的历史走向,这种走向表明数学在不断追求完美与和谐。

    The historical trend of mathematical philosophy is from rationalism to empiricism , which indicates that mathematics is going on pursuing perfection as well as harmony .

  29. 从数学哲学角度对数学概念的定义、一般与特殊的关系这两个问题进行了论述。

    Two problems as the definitions of mathematical concepts and the relation between the general and the particular are discussed from the perspective of mathematical philosophy .

  30. 从中可以看到,不可分的直观成为康德数学哲学区别于其他数学哲学流派的核心概念。

    It can be found that the " indivisible intuition " is the core concept which makes Kant 's philosophy of mathematics rather different from others ' .