广义解析函数
- 网络generalized analytic function
-
广义解析函数三元素Riemann型边值问题的封闭形式解
The sealed form solution of three-element RIEMANN-TYPE boundary value problem of generalized analytic function
-
第二章介绍了分析中的Fourier级数,测度论基础中的乘积测度和著名的Fubini定理以及广义解析函数理论。
In chapter 2 , we shall give an exact introduction to Fourier series which occurred in analysis , multiplicative measure and Fubini theorem in measure theory and some details for the theory of the generalized analytic function .
-
本文给出了一类有关广义解析函数Riemann边值逆问题的数学提法。
In this paper , the mathematical formulation of a class of inverse Riemann boundary value problems for generalized holomorphic functions is presented .
-
广义解析函数的广义Riemann-Hilbert问题
Generalized Riemann-Hilbert Problem for Generalized Analytic Function
-
对于一阶椭圆型方程组的Riemann-Hilbert边值问题,利用广义解析函数理论、Cauchy积分公式、函数论方法和不动点原理,证明在某些假设条件下所讨论问题的可解性;
For the Riemann-Hilbert boundary value problems for the first order elliptic systems , we proves the problems solvable under some assumptions by means of generalized analytic function theory , Cauchy integral formula , function theoretic approaches and fixed point theorem ;
-
本文讨论广义解析函数带两个Carleman位移和导数的广义及Riemann-Hil-bert问题(问题1),其中导数可以是一阶、二阶甚至是高阶的。
In this paper is analysed the generalized Riemann-Hilbert boundary value problem ( problem 1 ) for generalized analytic functions with two Carleman 's shifts and derivatives , which can be of the first , second , or higher orders .
-
拟线性广义解析函数的拓扑性质
On the Topological Properties for Quasi-linear Generalized Analytic Function
-
广义解析函数带两个位移和导数的广义Riemann&Hilbert问题
On the Generalized Riemann-Hilbert Problem of Generalized Analytic Functions Having Two Carleman 's Shifts and Derivatives
-
向量值广义解析函数
Vector _ Valued Generalized Analytic Function
-
第四章讨论了一类广义解析函数关于区域边界的稳定性;
In the fourth chapter , we discuss the stability of a class of generalized analytic function when the boundary curve of domain of integration perturbs ;
-
第二章讨论了在广义解析函数理论中起重要作用的若干奇异积分在积分区域边界发生摄动时的稳定性;
In the second chapter , we study the stability of some singular integral which play a great role in generalized analytic function theory when the boundary curve of domain of integration perturbs ;
-
讨论一阶椭圆型方程组的广义Riemann-Hilbert问题,利用广义解析函数和奇异积分理论以及不动点原理,证明在适当的假设下,此边值问题可解。
The generalized Riemann-Hilbert problem for the first order elliptic systems is studied . By using the generalized analytic function theorem , the singular integral theorem , and fixed-point theorem , it has been shown that the problem is solvable under certain assumptions .