基态能量

  • 网络ground-state energy;ground state energy
基态能量基态能量
  1. Li~+非相对论基态能量的Hartree近似方法计算

    Calculating the Ground-State Energy of Li-ion by Using Hartree Approximate Method

  2. 用变分法求解氦原子的基态能量

    Calculating the ground-state energy of helium atom by using variational method

  3. H2~+键长和基态能量的再计算(英文)

    The Repeated Computation of the Bond Length and Ground - State Energy for H_2 ~ +

  4. 类Li与类Be离子基态能量的简便计算公式

    Simple formulae for the calculation of Li like and be like ionic energies of ground states

  5. 多支LO模对极化子基态能量的影响

    Effect of LO Modes on the Ground State Energy of Polaron

  6. 采用完全计数法,研究了二维紧密蛋白质链在不同HP序列时的构象性质,特别是具有唯一基态能量的折叠序列的性质。

    Statistical properties of folding sequences of two-dimensional compact protein were investigated by using the enumeration calculation method .

  7. 用泛函Euler方程求解线性谐振子的基态能量和波函数

    Solving ground state energy and wave function of a linear harmonic oscillator by Euler equation

  8. 基于Matlab的N~(5+)和O~(6+)基态能量与波函数的变分计算

    Variational Calculations of Ground State Energy and Wave Function of N ~ ( 5 + ) and O ~ ( 6 + ) Ion Using Matlab

  9. 利用泛函极值满足的Euler方程,解出了线性谐振子的基态能量和波函数。

    The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum .

  10. 数值计算结果表明:抛物量子线中强耦合极化子的基态能量Eo随约束强度ω0的增强而增大,而随电场强度F和量子线长Z的增大而单调减小。

    Numerical calculation illustrated that the ground state energy increases with the increasing confinement strength , and decreases with increasing of electric field strength and wire length .

  11. 通过数值计算方法,我们得到了基态能量和Coulomb束缚参数,抛物线参数以及电场强度参数的关系。

    Some numerical results about the relations between the ground state energy and the Coulomb binding parameter , the parabolicity parameter , and electric field strength are obtained .

  12. 在考虑电子与LO声子相互作用和加电场的情况下,计算了抛物量子线中强耦合极化子的基态能量。

    The ground state energy of strong-coupling polaron in parabolic quantum wires is calculated for the case where the electron interacted with bulk LO phonon and added electric field .

  13. 并对CdF2、CsI、ZnS和GaAs晶体进行了数值计算,结果表明:两种情况下抛物量子线中极化子的基态能量E0都随约束强度ω0的增大而增大。

    Numerical calculation for crystals CdF_2 ? CsI ? ZnS and GaAs indicated that the ground state energy E_0 will increases with the increasing of confinement strength ω _0 .

  14. 我们进一步用CBA方法得到模型的Betheansatz方程组及基态能量,并详细研究了系统在极限条件下的能谱和动量。

    The Bethe Ansatz equations and ground-state energy-are calculated . The momenta of the system and the energy spectrum are studied in some special cases .

  15. 在二级微扰变分近似下得出了其基态能量表达式和基态持续电流表达式,并在库仑排斥势趋于无穷大的假设下,得到了系统Kondo温度及持续电流的数值计算结果。

    The explicit expression of the ground state energy and the persistent current of the system are obtained by a second order variational perturbation approximation method .

  16. 分析并推导求解了双电子原子基态能量的相对论修正中的两个基本问题:动能平方算子和三维Diracδ-函数的基态期望值。

    We analyze and solve two questions in the relativistic correction of ground energies of two-electron atoms : the expectations of the square of the kinetic energy operator and the three-dimensional Dirac delta function .

  17. 论文中,我们计算了凝聚体的量子耗散和基态能量,根据得到的原激发,我们可以得到双成分玻色-爱因斯坦凝聚的Landau临界速度。

    Quantum depletion and ground state energy have been calculated in this thesis . With the obtained excitations , we can calculate the Landau critical velocity of a two-component BEC .

  18. 用变分法讨论了异质界面上中性施主D0的能量随垂直于界面的磁场的变化情况,计算得到此结构中D0中心的基态能量和束缚能。

    Neutral donor on the heterointerface in magnetic fields were studied . Using a variational method , the ground energies and the binding energies of D ~ 0 center was calculated .

  19. 本文应用larsen的算符代数方法,结合变分波函数,研究电磁场对量子阱中极化子的影响,给出系统基态能量与阱宽和电磁场的关系。

    Using a combinative method of variational wave function with harmonic oscillator operator algebra , the authors investigate the influence of electric and magnetic fields on a polaron in the GaAs / AlAs quantum well .

  20. 得出的结果表明:(1)中性施主杂质体系和带负电施主杂质体系的基态能量都会随着磁通量的变化发生振荡,即A-B振荡。

    We analyze and discuss the calculation results in detail , which show that : ( 1 ) The ground state energy of the neutral donor impurity system and charged donor impurity system will oscillate ( A-B oscillation ) with the change of magnetic flux .

  21. 第二节中从Frohlich激子一声子系哈密顿出发,用Haga研究极化子时提出的微扰法导出了激子的基态能量、有效质量以及内部势能;

    In section 2 , from a Hamiltonian of the exciton-phonons system , the ground state energy , effective masses and electron-hole interacting potential are derived by using a perturbation method proposed by Haga .

  22. 将Hartree近似方法应用于类氦离子的试探波函数,对Li+的非相对论基态能量进行计算并于实验值相比,误差仅为0.8%,得到较为满意的结果。

    The result of non-relativistic ground state energy of Li-ion has been obtained by using Hartree approximate method into trial wave function of helium-like ions , the error being 0.8 % , and it is well in accord with the value gotten from experiment .

  23. 本文用LLP方法研究中耦合极化子的基态能量,考虑光学声子的色散,得出中耦合极化子的自陷能和有效质量都因声子色散而增大的结论。

    In this note , the effects of optic phonon dispersion on the ground state energy of intermediate-coupling polaron are discussed by LLP method . Some relations about the dependence of self energy and effective mass of intermediate coupling polaron on the phonon dispersion are derived .

  24. 我们的结果表明,次近邻耦合参数为正时,Mott绝缘相在相空间的区域减小,而其基态能量值增加。次近邻耦合参数为负时情况正好相反。

    The results show that for a positive t ' , the region of the Mott insulator phase on the phase space is reduced and the absolute value of the ground-state energy is enhanced , but the effects of a negative t ' are just opposite .

  25. 本文采用Huybrechts的线性组合算符以及一种简单的么正变换,导出了二维晶体中通过形变势与声学声子强耦合的极化子的基态能量,发现其自陷能和耦合参数近似成线性关系。

    Strong-coupled acoustic polaron via the deformation potential is investigated by means of Huybrechts ′ linear combination operater method and a simple unitary transformation . The ground energy is obtained , the relation of the ground energy and coupling constant is linear approximately .

  26. ∧~6li超核的基态能量

    The ground state energy of the hypernucleus _ λ ~ 6li

  27. 本文用电偶极子模型计算了锂原子基态能量。

    The calculation of energy of Lithium atom in ground state ;

  28. 准球对称分子基态能量的计算

    Calculating the Ground States Energies of the Molecules for Spherical Symmetry

  29. 同调谐振子参数与基态能量的关系

    The relations of the ground state energy and isotropic oscillator parameter

  30. 多原子极性晶体系统中杂质态的基态能量

    Ground State Energy of a Pollution State in Polyatomic Polar Crystals