化学势

  • 网络The Chemical Potential
化学势化学势
  1. 水本身会使生物膜附近的化学势发生变化。

    Water changes its chemical potential near biomembranes .

  2. Cu纳米粒子化学势随粒径和温度变化规律研究

    Variety Rule of the Chemical Potential of Cu Nanometer Particle with Radius and Temperature

  3. 在第五章,通过引入化学势广,我们计算了MgBz超导体的掺杂性质,得到了超导转变温度与化学势p的关系。

    The relation between superconductivity transition temperature and doping is obtained .

  4. 在气相的化学势必须,And,the,chemical,potential,of,B,in,the,gas,phase,has,to,等于B在液相的,化学势。

    B Be equal to the chemical potential of B in the liquid phase .

  5. 这就是化学势,G对压强的依赖关系。

    It 's just the potential , the pressure dependence of G.

  6. 气体粒子的化学势与温度T、粒子密度n的关系,可用维里展开表达。

    Chemical potential of gas particles related to temperature T and particles density ncan be expressed as Vinal expansion .

  7. 好,这就是A的化学势,在纯态,温度为T,压强为p总时。

    Well , that 's just the chemical potential of A , in the pure state , at temperature T and pressure pT .

  8. 化学势,从基本方程上说,就是A对N的偏导,因此对A取N偏导,因此化学势也能,用正则配分函数表示。

    The chemical potential from the fundamental equation up here is the derivative of A with respect to the number of particles .

  9. 强准粒子注入产生的超导铅膜双能隙态中准粒子有效化学势μ~与过量准粒子数n的关系

    The dependence of quasiparticle effective chemical potential μ ~ on excess quasiparticle number density N in superconductive lead film under strong quasiparticles injection

  10. 那么,我们能写出对于,在某个温度和压强下,液相的μA一定等于气相中,的化学势,of,A,for,the,gas。,那是分压。

    A So , we can write for A , mu A of the liquid at some temperature and pressure must equal chemical potential A That 's the partial pressure .

  11. 在第二部分中,计算结果表明重子化学势μB和奇异子化学势μS是净重子密度的单调变化函数。

    In the second part , the calculations show that baryon chemical potential HB and strangeness chemical potential / / sare monotonous function of net baryon density .

  12. 但我们刚刚计算出,μA和μB的表达式,在理想液体混合物中,每种组分的化学势。

    But we 've just figured it out our expressions for mu A and mu B , our chemical potentials of each constituent in the ideal liquid mixture .

  13. 等于纯净物时系统的化学势,在同样的温度,压强pA下。

    Is equal to the chemical potential of the pure system , same temperature under pressure is p sub a on that side .

  14. 我们发现配分函数完全由dressed夸克传播子决定直到有限化学势到达某个常数为止。

    It is found that the partition function is totally determined by the dressed quark propagator at finite chemical potential up to a multiplicative constant .

  15. 对CH4反应x为0.2.这是由于随x的增大,催化剂晶格缺陷增多,晶格氧的化学势增大而造成的。

    It is considered that the above behaviour is caused by the enhancement of lattice defect and the chemical potential of lattice oxygen in the catalysts with the increase of x .

  16. 另外,我们还提出了一种在有限化学势下计算QCD配分函数的普适方法。

    Additionally , we propose a general method for calculation the partition function of QCD at finite chemical potential .

  17. 这些log的分压都来自于,化学势对μ零加RTlogp的展开。

    These log partial pressures all come from expanding out the chemical potential as mu naught plus RT log p.

  18. CO2是有机物氧化的最终产物,是一种低化学势物质,如何有效地将其转化为有用的化工资源,十分重要。

    CO 2 is a kind of low chemical potential substance for it is a final oxidation product of organics . How to transform it into useful chemical resource is a great challenge to us .

  19. Li(α)在嵌锂化合物中的化学势越低,其与水发生反应的趋势就越小,即正极材料的嵌锂电位越高,其贮存稳定性越好。

    The lower the chemical potential of the Li (α) in lithium ( intercalation ) compound , the weaker was the tendency to react with water . The cathode materials were more stable during storage with higher lithium intercalation potential .

  20. a.碳原子在碳氢化合物中的化学势高于固相碳,气相碳氢化合物的碳原子有可能落到化学势较低的石墨相或金刚石相。

    The chemistry potential of carbon atoms is higher in the state of hydrocarbon gases than in solid state . The carbon atoms in hydrocarbon gases may probably drop to graphite or diamond phase that have a lower chemistry potential .

  21. Ti-Si-C三元系化学势稳定性相图及其应用

    Stabilized Chemical Potential Diagrams for Ti-Si-C Ternary System at 1200 ℃ and Their Applications

  22. 用恒NVT正则系综MonteCarlo方法模拟线形分子&乙烷的相平衡,得出化学势、温度、密度、压力等热力学数据。

    The phase equilibrium of linear molecule , ethane , has been simulated by using the NVT canonical ensemble Monte Carlo method , and the thermodynamic properties of the system including chemical potentials ? temperature ? density ?

  23. 在温度和化学势的平面上,有三种可区分的相存在:强子相、夸克胶子等离子体(QGP)相和色超导相。

    There are three distinguished phases : the hadron phase , quark gluon plasma ( QGP ) and color super-conducting quark phase on the plane of temperature and chemical potential .

  24. 因为介子涨落效应,在平均场近似存在的Sarma相被排除掉,在低同位旋化学势时的π超流的Bose-Einstein凝聚区间也被明显地缩小。

    Due to the meson fluctuations , the Sarma phase which exists at mean field level is washed away , and the Bose-Einstein condensation region at low isospin density is highly suppressed .

  25. 结果表明采用Peng-Robinson、Redlich-Kwong及vanderwaals方程计算化学势与组分关系而得到的模拟结果优于Virial方程,且平均误差在5%之内。

    The relation between chemical potential and composition was calculated using different equation of state , namely Peng-Robinson , Redlich-Kwong , Van der Waals and Virial equations . The average deviation is less than 5 % .

  26. 由高能球磨引起的高密度晶体结构缺陷和溶质组元化学势的降低以及晶粒细化对形成Cu-Cr过饱和固溶体起着决定作用。

    This suggests that the high density crystal defects , solute elements chemical potential decreasing and crystalline refinement due to MA may play a critical role on the supersaturated solid solution of Cr in Cu . 2 .

  27. 求解了无限阶热力学Bethe-ansatz方程后,我们得到了化学势与粒子数密度的关系。

    After solving the infinite coupled equations from the thermodynamic Bethe-ansatz , we get the relation of density and chemical potential .

  28. 同时根据热力学稳定相平衡的条件,对Ti-B-C三元系处于稳定状态时各组元的化学势进行计算。

    According to the conditions of thermodynamics phase equilibrium , it is calculated about the stabilized chemical potential of the Ti-B-C ternary system .

  29. 在GCM理论框架下通过将化学势引入双定域场和有效作用量,本文找到一种有效的方法研究π介子在有限密度核物质中的一些性质。

    In the frame of GCM , by introducing the chemical potential of baryons in this paper , we have found an effective method to study some properties of TT Meson in a nuclear matter with finite density .

  30. 以溶剂DMAc的水溶液作凝胶浴时,凝胶浴的凝固能力降低,降低了溶剂与非溶剂扩散传质的化学势变化,容易发生延迟相分离,断面结构从指状向海绵状转变。

    DMAc solvent as a coagulation bath , resulting in concrete slowing , chemical potential of diffusion mass transfer between solvent and non-solvent changed , which induced delay demixing , membrane structure changed from finger-like structure to spongy structure .