共格界面

  • 网络Coherent interface
共格界面共格界面
  1. FCC:BCC部分共格界面台阶结构模型

    The Ledge Structural Models of FCC : BCC Partially Coherent Interface

  2. 用计算机研究了FCC:BCC部分共格界面结构随取向关系改变而发生的变化。

    The structure of FCC : BCC partially coherent interface is simulated by computer .

  3. 体系的共格界面能作为马氏体相变临界驱动力ΔGγ→εMs中的阻力项所占的比例小于10%。

    The interfacial energy as a resistance of martensitic transformation is less than 10 % of the critical driving force .

  4. 间隙原子C对共格界面能的影响程度大于N,原因是C、N同置换原子的交互作用不同。

    Because of the different interactions between substitutional ( N and C ) and interstitial atoms , N has a greater contribution to the interfacial energy than C atom .

  5. 含氮的Fe-Mn-Si基合金共格界面能的理论计算

    Theoretical Calculation of Coherent Interfacial Energy in Nitrogen-Added Fe-Mn-Si Based Alloys

  6. Fe-Mn-Si基合金共格界面能的离散点阵平面分析

    Discrete Lattice Plane Analysis of Coherent Interfacial Energy in Fe-Mn-Si Based Alloys

  7. 由于存在晶格错配,在共格界面作用下,VN和(Ti,Al)N调制层分别受到拉、压应力,在多层膜中产生以调制周期为周期的交变应力场。

    An alternating strain field which has the same period with the modulation period was formed because of the lattice mismatch between ( Ti , Al ) N and VN layers during the epitaxial growth .

  8. 微合金碳氮化物与奥氏体之间的半共格界面比界面能的理论计算

    Theoretical calculation of specific interfacial energy of semicoherent interface between microalloy carbonitrides and austenite

  9. 由此提出了SiCw/Al复合材料的半共格界面结构模型。

    According to the above experimental result a semi-coherent model of the interfacial microstructure in the SiCw / A1 composite has been presented .

  10. 进一步增加调制周期,两调制层之间产生非共格界面,破坏了薄膜中的交变应力场,薄膜的硬度和弹性模量也随之降低。

    Further increasing modulation period leads to the emerge of incoherent interface and the destroy of alternating stress field , accompanied by the decreased mechanical properties .

  11. 进一步推导出了预测自由表面纳米微粒和镶嵌在高熔点基体中并与基体形成共格界面的非自由表面纳米微粒的熔解熵和熔解焓的计算公式。

    Furthermore , we have obtained the relations accounting for the size and shape dependent melting entropy and melting enthalpy of nanoparticles with free and non-free surface .

  12. 最后对产生内耗的机制作了讨论,认为这是一种应力感生共格界面移动所引起的静滞内耗。

    Furthermore , the mechanism of internal friction was discussed , and is considered to be a static hysteresis loss associated with the stress-induced movement of coherent interfaces .

  13. 结果表明氧化铝纤维与硅相之间存在共格界面,可作为硅相非自发形核的衬底;

    The results indicate that there is a coupled interface between alumina fiber and Si phase , and the fiber can serve as propitious sites for the heterogenous nucleation of Si phase .

  14. 非共格界面为位错的攀移运动提供了有效的扩散通道,Cu/Nb和Ag/Fe多层膜的蠕变抗力随周期减小而减小。

    For fcc / bcc Cu / Nb and Ag / Fe multilayers , the incoherent interfaces can provide effective climb diffusion paths and thus the creep resistance decreases with decreasing periodicity .

  15. 相反,共格界面的形成不利于位错的攀移运动,Cu/Ni和Cu/Co多层膜的蠕变抗力随周期减小而增大。

    On the other hand , the formation of coherent interfaces is disadvantageous to the dislocation climb process and creep resistance of Cu / Ni and Cu / Co multilayers increases with decreasing periodicity .

  16. 对fcc/fcc超晶格结构Cu/Ni和Cu/Co纳米多层膜来说,弹性模量增强与半共格界面的界面压应力以及共格界面的共格应力相关。

    For fcc / fcc superlattice of Cu / Ni and Cu / Co multilayers , the modulus enhancement is related to compressive interface stress in semi-coherent interfaces or coherent stress in coherent interfaces .

  17. 置换原子对界面能的贡献随温度的上升而增加,而间隙原子的贡献与之相反,两者综合的结果是共格界面能随温度上升而增加。

    And the total interfacial energy increases with the increase of temperature , in which the contribution from N or C atom has a negative influencing , compared with that from the substitutional atoms .

  18. 非共格孪晶界面位移矢量的测定与分析

    Determination and analysis of displacement vectors at the incoherent twin boundaries

  19. 此外孪晶移动到边界处会受到阻碍,形成非共格的孪晶界面。

    In addition , the twins crystals moving to boundary will be hindered , and form the incoherent twin .

  20. 当镶嵌粒子与基体之间为共格或半共格界面时,表面原子受到基体原子的束缚,原子振幅小于内部原子的振幅,使晶体的平均振幅降低,而使熔化温度升高。

    When the interface is coherent or semi-coherent , the amplitude of surface atoms is less than that of internal atoms leading to mean square displacement of nanocrystals decrease , the melting temperature increases with size decreasing .

  21. Al-Si合金能很好地润湿Al2O3纤维,Al-Si合金与Al2O3纤维形成了共格、半共格混合界面;

    The analysis of tensile fracture shows that Al-Si alloy wets alumina fibers very well , and that coherent and semicoherent mixed interface is formed .