元数

  • 网络Arity;n-ary
元数元数
  1. 函数的参数数量称为元数(arity),用于帮助标识函数。

    The number of arguments to a function is called it 's arity , and is used to help identify the functions .

  2. 基于四元数和B样条的机械手平滑姿态规划器

    Smooth orientation planner for manipulators based on quaternion and B-spline

  3. n元数及其性质(Ⅰ)

    The N - ary number and its properties ( I )

  4. 四元数在GPS船姿测量中的应用

    Application of quaternion algorithm in GPS-based ship attitude determination

  5. 基于四元数方法的GPS航姿解算

    GPS based Attitude Determination Based on Quaternion Algorithm

  6. 四元数Beta分布、F分布及其特征根分布

    Quaternion beta distribution , distribution and their latent roots ' distribution s

  7. 基于PCA的发酵过程监控模型主元数的确定

    Determination of Principal Component of Performance Monitoring Model in Fermentation Process Based on PCA

  8. 四元数矩阵的Jordan标准形

    Jordan Canonical Forms of Matrices over Quaternion Field

  9. 关于四元数EP矩阵偏序的研究

    On Partially Ordered EP Matrix Over Quaternion Field

  10. 四元数方阵的GH合同标准形与同时对角化

    GH - congruence Canonical Form of Quaternion Matrix and Simultaneous Diagonalization of Matrices

  11. 再使用四元数Gabor滤波器组进行解析特征提取;

    Second , a quaternionic Gabor filter bank was designed to extract analytic features ;

  12. 一类四元数函数和Maxwell方程

    A class of quaternion functions and Maxwell equation

  13. 在这方面,四元数(Quaternion)的理论和方法或许是合适的。

    In this aspect , the quaternion theories and methods perhaps are appropriate .

  14. 基于EMD细化四元数谱的纹理分割

    Texture segmentation using EMD refined quaternionic spectrum

  15. 利用四元数表达计算出旋转参数R和平移参数t,完成配准工作。

    The run time is shorten as well . Adopting quaternion expression , this paper has computed the rotation parameter R and the translation parameter t to realized registration .

  16. Minkowski不等式在四元数矩阵中的推广

    The generalization of Minkowski inequality to matrix of quaternion elements

  17. 复四元数与狭义Lorentz群

    Complex Quaternion and Restricted Lorentz Group

  18. 四元数体上广义Toeplitz矩阵反问题

    Inverse Problem for Generalized Toeplitz Matrices over Quaternion Field

  19. 四元数体上矩阵的对角化和Schur定理(英文)

    On Diagonalization of Matrices and Schur Theorem over Quaternion Field ;

  20. 四元数体上任意矩阵的UR分解

    The UR decomposition of quaternions matrices

  21. 1843年,威廉汉密尔顿(williamhamilton)在都柏林发明了四元数,将虚数扩展到四维空间。

    Quaternions , which extend imaginary numbers into a further dimension , began to be developed by William Hamilton in Dublin in 1843 .

  22. 关于四元数体上重行列式以及Schur公式

    On Double Determinant and Schur 's Formulas over Quaternion Field

  23. 讨论了Hamilton四元数、马氏四元数及其与二维实信号类似的欧拉公式。

    In addition , Hamilton quaternion , Ma quaternion and their Euler formula similar to that of two-dimensional real signal were discussed .

  24. 并给出两自共轭四元数阵(其一为半正定)的同时GH合同简化形,由此得到两自共轭同时对角化问题的一些结果。

    Then simultaneous GH-congruence reduced forms for two self-conjugate matrices and some results about the simultaneous GH-congruence diagonalization of quaternion matrices .

  25. 空间6R机器人位置反解的对偶四元数法

    Dual Four Element Method for Inverse Kinematics Analysis of Spatial 6R Manipulator

  26. 利用四元数误差方程和非线性滤波技术能较好地解决大失准角下SINS的空中对准问题。

    In the case of large misalignment angles , quaternion error equation and nonlinear filtering can improve the performance of the in-flight alignment of SINS .

  27. 作为特例,此定理导出了四元数线性方程的Cramer法则。

    In particular , the Cramer formula of quaternionic linear equations is derived .

  28. 四元数矩阵的广义Schmidt分解与广酉空间中向量组的广义标准正交化

    Generalized Schmidt Decomposition of Quaternion Matrix and the Generalized Orthonormalization of a Set of Vectors in a Generalized Unitary Space

  29. 估计精度高、运算复杂度低、需求阵元数少、稳健的DOA估计算法一直是广大研究者追求的目标。

    High estimation accuracy , low computational complexity , few number of needed array sensors and robust DOA estimation algorithm is the goal of many researchers .

  30. 四元数非中心Wishart分布及其特征根分布

    Non-central quaternion Wishart distribution and its latent root 's distribution