上证指数
- 名Shanghai Stock Exchange Index
-
上证指数的非线性动态结构分析
The Non-linear Structure of the Shanghai Stock Exchange Index
-
ARCH类模型及其在上证指数收益波动中的应用
ARCH-Type Models and Its Application of the Return Volatility in Shanghai Stock Exchange Index
-
上证指数收涨44点。
The Shanghai Composite Index ended up44 points .
-
ARCH族模型在上证指数中的应用与预测
The Application and Forecasting on Shanghai Index of The Class of ARCH Model
-
基于RBF神经网络的上证指数预测研究
Prediction of Shanghai Stock Exchange Composite Index Based on RBF Neural Network
-
上证指数和恒生指数的copula尾部相关性分析
Tail Dependence Analysis of SZI HSI Based on Copula Method
-
基于ARIMA模型对上证指数的预测
Forecast and Analysis of Shanghai Stock Index Based upon ARIMA model
-
本文探讨了神经网络模型在股票预测上的应用,通过建立BP网络模型对上证指数进行了预测分析。
This paper discusses the application of neural network model in prediction of stock index and predicts the Shanghai exchange index by establishing BP network model .
-
经济增长的变化对房地产价格、CPI、上证指数的影响也最大。
The housing price , CPI and Shanghai Index are most influenced by economic development .
-
上证指数Hurst指数的测定及应用
Measurement on Hurst Exponent of SSE Index and Its Application
-
GARCH模型和SV模型的应用比较研究&以上证指数的波动性为例
The Comparison on Applications of GARCH and SV Models & Taking Shanghai Composite Index as An Example
-
将该神经网络用于上证指数的趋势预测,仿真结果表明:该神经网络比BP神经网络具有更好的全局收敛性、更高的学习效率和预测精度。
The neural networks is adopted to forecast Shanghai stock indexes . The result of emulation indicates that the neural networks has better global convergence and higher training efficiency and forecasting precision .
-
因此,只有用正态混合分布假设下的GARCH模型才可以较好地解释上证指数的波动性。
GARCH model is used on the basis of the hypothesis of mixed normal distribution to analyze the Shanghai-securities index volatility .
-
利用GARCH(1,1)讨论了上证指数上涨对居民储蓄的影响。
GARCH ( 1,1 ) was used to discuss the influence of Index of Shanghai Stock Market on the household saving .
-
本文将应用均匀设计抽样并结合EM算法,针对上海股票市场上证指数的历史行情,给出了技术分析指标&动态指标的最佳参数组合。
In this paper , I shall apply uniform design sampling and combine EM arithmetic to find the optimal combination of dynamic indicator in stock market of shanghai .
-
在提出改进的BP神经网络模型之后,本文分别使用改进的BP神经网络和支持向量机方法对上证指数做出预测,并对两种方法的预测结果做出比较。
After propose the improved BP neural network model , we then use the improved BP neural network and support vector machine to predict the SZZS and make a compare the results of two methods .
-
在研究过程中,首先,基于2002年1月至2011年12月的月度数据采用HP滤波趋势分解法探讨经济增长周期与上证指数波动的关系。
In the course of the study , firstly , it uses HP filter trend decomposition method to investigate the relationship between economic growth cycle and fluctuations of the Shanghai Composite Index .
-
主要使用极值理论中的两种方法对上证指数进行VaR估计,并且进行后验测试以评价该方法的可靠性。
Making use of the two estimation methods of EVT the paper predicts the VaR of Shanghai Securities Composite Index . Then the reliability of the methods has been evaluated by back testing .
-
然而,上证指数和所研究的任何一个宏观经济变量都不存在双向的Granger因果关系,说明任何一个宏观经济变量都无法单独的预测上证指数的走势。
However , neither Shanghai index nor any macroeconomic variable studied here has Granger causal relation , that means none of the macroeconomic variables can predict the Shanghai index tendency alone .
-
然后,运用AD方法检验数据时间序列的平稳性,接着对各宏观经济变量对上证指数进行协整检验和Granger因果关系检验。
Then stationarity of time series for the data has been examined by adopting AD method , followed by cointegration test and Granger causal relation test against each macroeconomic variable and Shanghai Stock Exchange index respectively .
-
本文通过对上证指数进行全面系统研究,指出利用稳定分布能够更好地拟合我国股票市场的收益率,并且在稳定分布情况下,利用VaR和预期损失两个指标来度量风险。
On the basis of complete study , the thesis argues that the stable distribution fits the ShangHai Stock Index better . And also , the VaR and the expected shortfall can be used as the risk measurement .
-
此外本文将WES与GARCH(1,1)模型结合预测上证指数风险,比单独使用VaR与ES模型考虑了投资者的风险厌恶,解决问题的能力更强,对股票波动率的刻画也更合理。
At last WES model combined with GARCH ( 1,1 ) forecast the Shanghai index risk , which considering the risk aversion of investors . This model has better problem-solving and stock volatility than the VaR and ES models .
-
本文通过对恒生指数和上证指数历史数据的处理,给出HURST维数的R/S估计,进而研究两个股票指数的相似性。
In this paper , we get the R / S estimations of HURST dimension through computing the historical data of Hang Seng Index and Shanghai Index , and study the similarity of two indexes .
-
对上证指数、恒生指数、台湾指数和标准普尔500指数的实证分析表明MCMC方法优于经典的IFM方法。
For the analysis of Shanghai composite index , hang sang index , Taiwan weighted index and s & p 500 index , and our results show that the MCMC method is superior to the classical IFM method .
-
交易机制对市场预测性产生了不可忽视的影响。(2)运用LSB模型对上证指数和万科A的信息成本大小进行度量,结果显示万科A的信息成本远低于上证指数。
Trading mechanism has produced a unnoticeable influence on market predictability . ( 2 ) Using LSB models shipped to measure the size of information costs of the Shanghai Index and Wanke A , results show that the information cost of Wanke A is far less than the Shanghai index .
-
基于奇异谱分析的上证指数预测模型
Singular Spectrum Analysis and Forecast Model Based on Shanghai Composite Index
-
移动平均线有用吗?&基于上证指数的实证研究
Are Moving Average Rules Profitable ? Evidence from Shanghai Composite Index
-
基于贝叶斯推断的上证指数突变点研究
Research on Change-Points in Shanghai Composite Index Based on Bayesian Inference
-
运用生存模型对上证指数与成交量的研究&兼论股市的政策效应
Study of Shanghai tock lndex and the polices effect with survival analysis
-
通过应用回归分析的方法,我们比较了上证指数,上证180指数和上证A股指数作为备选的市场组合的各种情况。
The candidates are Shanghai composite index , 180 index and A-index .