龙格现象

  • 网络Runge;runge phenomenon
龙格现象龙格现象
  1. 多项式插值虽然结构简单便于构造但是当插值函数次数较高时可能会产生龙格现象。

    Polynomial interpolation although the structure is simple and easy to construct , when the number of the interpolation function is higher may be product Runge phenomenon .

  2. 但是,随着插值多项式次数的提高,计算误差会增大,出现龙格现象和不稳定。

    But with the increasing of the order of interpolation polynomials , serious oscillation phenomena will appear , which will increase the computational error and affect instabilities of computations .

  3. 本文利用二元函数和多元函数的分段低次插值方法,求出风压系数分布的插值函数,进而反映整个屋面的风压分布情况,此方法能避免高阶插值方法带来的“龙格”现象;

    In this paper , piecewise low-order interpolation method of two-dimensional and multi-dimensional function is used to determine wind pressure distributions on the whole roof surface . This method can avoid " Runge " phenomenon of high-order interpolation .