高斯过程

  • 网络Gaussian process
高斯过程高斯过程
  1. d维平稳高斯过程多重时的Hausdorff维数及Packing维数

    Hausdorff dimension and packing dimension of multiple time set of d-Dimension stationary Gaussian processes

  2. 关于平衡高斯过程的Poincaré不等式和log-Sobolev不等式

    Poincar é Inequality and Log-Sobolev Inequality for Stationary Gaussian Processes

  3. 利用GPS探测电离层异常中的高斯过程处理方法

    Gaussian Random Process and its Application for Detecting the Ionospheric Disturbances Using GPS

  4. 将理赔到达过程推广为更新过程、广义复合Poisson过程、Cox过程、Gamma过程和逆高斯过程等等。

    Under the assumption that the claim-arrival process is the renewal process , Cox process , generalized compound Poisson process , Gamma process and inverse Gaussian process etc.

  5. 假设基带OFDM信号为一带限复高斯过程,研究了带限OFDM信号峰平功率比(PAPR)的分布。

    Assuming that the baseband OFDM signal is characterized by a band-limited complex Gaussian process , the distribution of the peak-to-average power ratio ( PAPR ) in band-limited OFDM signals is investigated .

  6. 在修复的结果上进行后续处理,使之看起来更真实?认为海浪是零均值、平稳、各态历经的高斯过程,波高谱服从P-M分布。

    Gaussian smooth . The ocean waves are considered to be zero mean , stationary and ergodic gaussian random processes specified by the P-M wave height spectrum .

  7. 研究了满足Berman条件的局部平稳高斯过程{X(t),0≤t≤T}的最大值与最小值的联合渐近分布。

    Let X ( t ), 0 ≤ t ≤ T be locally stationary Gaussian process that satisfies Berman ' condition . We study the asymptotic joint distribution of maxima and minima .

  8. 依据平稳随机过程&高斯过程的相关性质,利用其自协方差函数和TEC时间系列,构建了独立同标准正态分布的观测样本,并利用x~2假设检验的方法来探测电离层异常现象。

    Based on this fact , here we made use of the time series of TEC and the auto-covariance function of the stationary process to construct independent identical distribution Gauss sample so that the X ~ 2 test can be used to detect the abnormity hidden in the sequence .

  9. 多参数平稳增量高斯过程的若干极限结果

    Some Limit Results for the Multi-parameter Gaussian Processes with Stationary Increments

  10. 高斯过程的最大值的重对数律

    An iterated logarithm law for the maximum in a Gaussian process

  11. 基于高斯过程机器学习的冲击地压危险性预测

    Forecast of rock burst intensity based on Gaussian process machine learning

  12. 一种基于仿射传播聚类和高斯过程的多模型建模方法

    Multi-model Modeling method Based on Affinity Propagation Clustering and Gaussian Processes

  13. 基于混合高斯过程的多模型热力参数测量软仪表

    Thermal parameter soft sensor based on the mixture of Gaussian processes

  14. 离散非平稳高斯过程在实际中经常遇到。

    The discrete nonstationary Gaussian processes are encountered in manypractical situations .

  15. 瓦斯涌出量预测的高斯过程机器学习模型

    Forecasting Amount of Gas Emission Using Gaussian Process Machine Learning Model

  16. 用于高光谱遥感图像分类的空间约束高斯过程方法

    A spatial Gaussian process method for hyperspectral remote sensing imagery classification

  17. 在混合条件下非平稳高斯过程的联合逗留极限定理

    Limit laws for joint sojourns of Gaussian process under mixing conditions

  18. 具有高斯过程输入的一类非线性系统的输出相关函数

    The output correlation function of some nonlinear systems with Gaussian process input

  19. 一类平稳高斯过程象集代数和的性质

    Properties of Algebraical Sum of Image Sets of the Stationary Gaussian Process

  20. d维平稳高斯过程的极函数及其相关维数

    Polar Functions and Relative Dimension for d-Dimensional Stationary Gaussian Processes

  21. 零均值、窄带高斯过程的过阀特性

    Statistical Property of Threshold-Crossing for Zero - Mean-Valued , Narrow-Banded Gaussian Processes

  22. 高斯过程机器学习在边坡稳定性评价中的应用

    Application of Gaussian process machine learning to slope stability evaluation

  23. 基于高斯过程分类器的连续空间强化学习

    Reinforcement Learning for Continuous Spaces Based on Gaussian Process Classifier

  24. 详细介绍了高斯过程的经典书籍,应用在机器学习上。

    Detailed introduction of Gaussian Process modal applied in Machine learning Domain .

  25. 第二,提出了基于稀疏高斯过程的多用户检测技术。

    Proposed the based on sparse Gaussian process multiuser detection .

  26. 关于平稳高斯过程的上穿过期望次数的几点注记

    Notes on Mean Number of Upcrossings for Stationary Gaussian Process

  27. 非平稳高斯过程的最大值的渐近性质

    Asymptotic properties OE the maximum in a nonstationary Gaussian process

  28. d维平稳高斯过程极集的必要条件

    The Necessary Conditions of the Polar Sets for d-Dimension Stationary Gaussian Process

  29. d维平稳高斯过程相交局部时的几个性质

    Several Properties of Joint Local Time of d Dimension Stationary Gaussian Processes

  30. 高斯过程是最重要的随机过程。

    Gaussian process is the most important random process .