薛定谔方程
- 网络Schrodinger's equation;the schrodinger equation;schrdinger equation
-
N-N非定域的薛定谔方程
The Schrodinger Equation of N - N non-local
-
因此采用数值求解非线性薛定谔方程的办法来模拟BEC波包的隧穿过程。
Therefore , we simulate the tunneling process of the BEC wave packet via solving the nonlinear Schrodinger equation numerically .
-
介绍了一种用于求解一维含时薛定谔方程的MATLAB矩阵分解算法。
A MATLAB matrix decomposition algorithm for solving the one-dimensional time-dependent Schr ? dinger equation is presented .
-
讨论了非线性和PMD的相互作用,推导了非线性耦合薛定谔方程。
The interaction of the PMD and nonlinearity was discussed .
-
Cornell势下薛定谔方程本征值问题的代数解法
Algebraic Method to the Eigenvalue Problem for the Schrodinger Equation with Cornell Potential
-
本文介绍一种新的求非线性薛定谔方程(NLS方程)N孤子数值解的方法,它是一种递归的计算方法。
' We present a new method to obtain soliton 's numeric solution from the NLS equation , it is a recurrent method .
-
在共振情况下求解两能级原子在激光衰波场中的薛定谔方程,得到了基态原子反射率Rg、激发态原子反射率Re以及原子总反射率Rt的解析表达式。
The analytical solution for resonant reflection of a two level atom by an evanescent laser wave is presented .
-
本文进一步发展了Laser模型,研究是基于对Burn-Oppenheimer近似下的固体薛定谔方程和非绝热近似算符的跃迁矩阵进行的量子理论处理。
In proceeding to develope " Laser Mode " , our approach is based on the quantum treatment & the Schrodinger wave equation for solid state in the case of Born-Oppenheimer approximation and the transition matrix with nonadiabatic operator .
-
先通过对角化方法数值求解了静电场中锂原子的定态薛定谔方程,研究了里德堡锂原子Stark能级的能级图,能级反交叉和吸收振子强度。
Dinger equation is solved numerically by diagonalization method , Stark maps , avoided crossing and oscillator strength for Li are investigated .
-
幂函数叠加势的薛定谔方程及Dirac方程的解析解
The Analytic Solution of the Schr (?) dinger Equation and Dirac Equation for the Superposition Potential of the Power Functions
-
根据具体问题的需要,可以结合精细Runge-Kutta方法和傅里叶变换方法求解非线性薛定谔方程。
For some specific nonlinear Schrodinger equation , it is better to compound the precise Runge-Kutta method with split-step Fourier numerical method .
-
推导了双栅MOSFET器件在深度方向上薛定谔方程的解析解以求得电子密度和阈电压。
The analytical solutions to1D Schrdinger equation ( in depth direction ) in double gate ( DG ) MOSFETs are derived to calculate electron density and threshold voltage .
-
主要分析讨论了PMD的几种研究方法:琼斯矩阵法、斯托克斯空间法和耦合非线性薛定谔方程。
In this paper , several study methods on PMD are analyzed , such as Jones matrix , Stokes vector and the coupled nonlinear Schrodinger equation .
-
类似于Hartree-Fock理论,激发能可以通过求单粒子的类薛定谔方程得到。
Like in Hartree-Fock theory , the excitation energies can be determined by solving a single-particle Schr ?
-
当我们第一次介绍,薛定谔方程的时候,我说你们,可以,把psi看做是,电子位置的代表。
When we first introduced the Schrodinger equation , what I told you was think of psi as being some representation of what an electron is .
-
同时,提出了非线性薛定谔方程的精细Runge-Kutta方法,与最新基于量子力学的相互作用绘景给出的薛定谔方程的计算方法基本一致。
In the meantime , precise Runge-Kutta method for solving nonlinear Schrodinger equations is presented , which is the same as the recent result based on interaction picture in quantum mechanics .
-
以非线性薛定谔方程为理论依据,应用对称傅立叶变换,采用MATLAB编程,对色散缓变光纤(DDF)中孤子间相互作用进行了理论模拟,并与普通光纤进行了比较。
By non-linear Schrdinger equation , soliton interaction in decreasing-dispersion fiber ( DDF ) was simulated using split-step Fourier transformation and Matlab program . The results are compared with the soliton interaction in common fiber .
-
通过求解薛定谔方程、光波传输方程和载流子数量及能量速率方程,能够比较精确地描述光经过EAM传输后其强度、相位和偏振态的变化情况。
Through solving Schrodinger equation , coupled-mode equation , and carrier quantity and energy density equations , variation of optical power , phase and polarization for involved waves can be calculated .
-
但我说了,我们还有,其它的量子数,当你解,psi的薛定谔方程时,必须要,定义这些量子数。
But , as I said before that , we have some more quantum numbers , when you solve the Schrodinger equation for psi , these quantum numbers have to be defined .
-
本文简要介绍和评述了纳米MOS器件的设计模型,并对基于非平衡态格林函数以及薛定谔方程和泊松方程自洽解的器件模型应用进行了举例说明。
This article provides a brief review of physical models of nanoscale MOS devices and gives device modeling examples based on self-consistent solutions to Poisson 's equation , non-equilibrium Green 's functions and the Schr ? dinger equation .
-
W.K.B近似条件下定态薛定谔方程的简单求解
The Simple solution of Schrodinger Equation under W. K. B. Approximation Conditions
-
第四章对带有初边界值条件的线性薛定谔方程,通过作关于t的Laplace变换得到等价的积分方程,证明了方程的解算子是图灵可计算的。
Chapter 4 studies the linear Schrodinger equations with initial boundary value conditions , we get its equivalent integral equation by taking the Laplace transform with respect to the variable t , then we prove that its solution is Turing computable .
-
我们对一维模型氢原子光电离的CEPD效应进行了数值模拟的计算机实验,通过对含时薛定谔方程的数值求解,得到氢原子光电离的一些合理结论。
We performed extensive computer simulations on the CEPD effect on photoionization of hydrogen atom by numerically solving the time-dependent Schrodinger equation .
-
通过采用分步傅里叶变换法求解非线性薛定谔方程,模拟了啁啾光脉冲有振幅调制和相位扰动下的自相位调制(SPM)对压缩光脉冲对比度和预脉冲宽度的影响。
Self phase modulation ( SPM ) plays an important role on the compressed pulse in chirped pulse amplification lasers systems . The influences of the SPM with amplitude modulations and phase perturbations on the compressed pulse is simulated .
-
微商非线性薛定谔方程(DNLSE)是有众多物理应用的可积方程。
The derivative nonlinear Schrodinger equation ( DNLSE ) is an integrable equation of many physical applications .
-
从光脉冲的非线性薛定谔方程出发,在忽略色散的条件下,推导并模拟了自相位调制(SPM)非线性效应下的高斯光脉冲的非线性相移、频率啁啾;
Starting from the nonlinear Schroedinger equation of the optical pulse and neglecting the chromatic dispersion the nonlinear phase shifts and frequency chirps of the Gauss optical pulses caused by the self-phase modulation ( SPM ) are derived and computer simulated .
-
利用非线性薛定谔方程数值分析了基于非线性放大环镜(NALM)的纳秒方波脉冲光纤激光器。
A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror ( NALM ) is numerically analyzed by the nonlinear Schr ¨ odinger equation .
-
文中构造了一类s级2s-2阶的辛摄动配置算法,并就薛定谔方程这一模型给出了具体的数值计算格式。
We construct a symplectic s-stage perturbed collocation method of order 2s-2 and apply it to the Schrodinger equation .
-
为了克服上面两种方法的不足,我们引入局域Bloch波图象,利用局域Bloch波图象,建立了一个广义非线性薛定谔方程来描述带隙孤子解。
To overcome the shortcoming of the two methods , we introduce the local Bloch wave picture . Based on the local Bloch wave picture , we find that the envelop function of the field is a generalized nonlinear Schrodinger equations .
-
球形核的质子发射用WKB方法可以很好地描述,变形核的质子发射则须解耦合道的薛定谔方程。
It is introduced that the proton emission from a spherical nucleus can be well described by WKB method , while that from a deformed nucleus must be described by means of solving coupled channel Schrdinger equations .