激发温度

  • 网络Excitation temperature
激发温度激发温度
  1. 乙醇导入ICP时激发温度的测量及激发特性研究

    Some observations on ICP excitation temperature measurements and effects of ethanol on ICP excitation

  2. 大功率MIP中激发温度和电子密度的测定

    Determination of Excitation Temperature and Electron Density in High Power Microwave Induced Plasma

  3. 利用我们研制的分光技术测量AlO的三条振动谱线强度,确定了AlO激发温度。

    AlO excitation temperature is determined by AlO three vibration spectra intensity and spectroscopy technique .

  4. 采用发射光谱强度比法,测量了大气压氩气介质阻挡放电(DBD)中的电子激发温度。

    The electron excitation temperature was measured by the intensity ratio of two spectral lines in argon dielectric barrier ( discharge ) ( DBD ) at atmospheric pressure .

  5. 利用微型光纤光谱仪实现了电弧纯铜等离子体的原子发射光谱的实时测量,得出其激发温度与激发时间的相对关系,得出电弧引燃30s后等离子体温度相对稳定。

    The real-time atomic emission spectrum of the arc plasma ( Cu ) has been measured by micro-fiber optic spectrometers . The relation of the excitated temperature and time was obtained .

  6. 通过电子能量概率函数方法、Fermi-Dirac模型、低气压放电的Schottky扩散理论,分别计算了等离子体的电子温度、电子激发温度和电子密度。

    The electron excitation temperature , electron temperature and electron density were obtained using respectively the electron energy probability function , Fermi-Dirac model and Schottky diffusion theory of low pressure discharge .

  7. 本文较详细地研究了载气流量、微波功率、HCl和乙醇浓度对等离子体的形成、分析元素谱线强度和氩发射强度、激发温度的影响,得到了一些有意义的结果。

    In this paper , the influence of argon flow rate , microwave power and concentration of HCl and alcohol on plasma generation , emission intensities of analytical elements and argon and excitation temperature was investigated in detail . Some interesting results were obtained .

  8. 在假设局部热力学平衡的前提下,分别采用Boltzmann作图法和Saha-Eggert解离平衡计算法测定了大功率微波诱导氮等离子体的激发温度和电子密度。

    Measurements of excitation temperature and electron density in high power microwave induced nitrogen plasma were carried out with an assumption of local thermodynamic equilibrium using Boltzmann plot method and Saha-Eggert ionization equilibrium calculation respectively .

  9. 用波尔兹曼曲线的方法测得了氩原子的激发温度,而且激发温度并不随功率的改变有明显的改变,约为2800K,并估算了电子温度。

    Excited temperature was about 2800K attained by Boltzmann equation , and excited temperature not evidently changes versus the change of power . Electron temperature was estimated on the basis of excited temperature .

  10. 结果表明,当激光束焦斑围绕样品表面上下移动时,等离子体激发温度的分布具有不对称性;当焦斑位于样品表面以下0.4mm左右时,等离子体的激发温度接近最大值;

    The experimental results show that if the focal point of the Len shifts around the surface of the sample , the excitated temperature of the plasma appears asymmetric , and the maximum occurs at the location which is about 0.4 mm under the surface of sample ;

  11. 钛元素的激发温度也是如此类似测得。

    The excitation temperatures of Ti thus measured . are comparable .

  12. 等离子体光谱源中的电子激发温度的测量

    Determination of Electronic Excitation Temperatures in the Plasma Spectroscopic Source

  13. 混合气体介质阻挡放电中的电子激发温度

    Electron Excited Temperature in Dielectric Barrier Discharge in Gas Mixture

  14. 厚铝管中激光激发温度场和瑞利波的模拟

    Simulation of Laser-induced Temperature Fields and Rayleigh Waves in Thick Al Pipe

  15. 脉冲放电等离子体电子激发温度发射光谱诊断超高密度高温等离子体诊断

    Emission Spectroscopy Diagnosis of the Electron Excited Temperature in Pulse Streamer Discharge

  16. 电弧等离子体激发温度的测定

    The Measurement of the Excitation Temperature of Arc Plasma

  17. 电弧激发温度测量方法改进及其结论处理

    Improvement on the Measuring of Temperature Excited by Electric Arc and Conclusion Processing

  18. 采用发射光谱强度比法,计算了放电丝呈六边形斑图时的电子激发温度。

    Electron excitation temperature of hexagon pattern was calculated using intensity ratio method .

  19. 用线组法测定电弧等离子体的激发温度

    Measure the Excitation Temperature of the arc Plasma with the Method of Spectral Line Group

  20. 随着环境气压的增大,等离子体的激发温度明显增强。

    With the increase of the gas pressure , the excitated temperature of the plasma enhances significantly .

  21. 为解释谱线强度增强的机理,测量了等离子体的激发温度。

    The excitation temperature of laser plasma was measured to explain the mechanism that the line intensities increase .

  22. 结果:随着醋酸、盐酸浓度的增加,等离子体激发温度、电子密度随之降低。

    Results : The excitation temperature and electron density decreased when the concentration of HCl and HAc increased .

  23. 射流的激发温度和转动温度结果显示,这是一种冷的等离子体射流。

    The calculated results of excitation and rotation temperature consistently illustrate the plasma jet is non-thermal in nature .

  24. 电子激发温度随气压的升高不断降低,气压的变化对离子温度的影响不大,随着微波功率的上升,电子激发温度和离子温度都有不同程度的增加。

    With the microwave power increase , the electronic excitation temperature and ion temperature increase with a different extent .

  25. 空气介质阻挡放电单个微放电通道发光强度及振动激发温度的空间分布

    Spatial distributions of the intensity of luminescence and the vibrational temperature of single micro-discharge channel in air dielectric barrier discharge

  26. 目的:探讨了醋酸、盐酸对电感耦合等离子体激发温度、电子密度的不同影响。

    Objective : To investigate the influence of excitation temperature and electron density in ICP for HCl and HAc solvents .

  27. 实验结果显示,随激光输出能量的增加激发温度逐渐降低。

    The experimental results showed that with the increase of the laser output energy , the excitation temperatures were gradually decreased .

  28. 在一定的溅射气压下,基态铜原子密度、电子激发温度、均随功率的增大而增大。

    Under a certain sputtering pressure , the ground Cu atomic density and electron excitation temperature both increase with the sputtering power .

  29. 电感耦合等离子体在不同操作条件下的温度和电子密度的测定&Ⅰ.气体温度、激发温度、电离温度的测定

    The measurement of temperatures and electron number densities in a inductively coupled plasma under different operating conditions ⅰ . the measurement of temperatures

  30. 利用双线法对等离子体激发温度进行了测量,研究了射频功率对不同轴向位置等离子体激发温度的影响,随着射频功率的增加,激发温度逐渐增加。

    The excitation temperature of plasma was measured by Boltzmann plot . The excitation temperature variation with RF power in different axial was studied .