正整数
- 名positive integer
-
c可以取a或b,p是一正整数,0
C may be a or b , p is positive integer , 0
-
本文提出了一种P可为任意正整数的T2~p归并树。
A special T_2p merging tree is worked out where P can be any positive integer .
-
也就是a的b次方,而b是个正整数。
A to the b where b is an integer .
-
设N是全体正整数的集合。
Let N be the set of all positive integers .
-
分正整数n为K个部分的分拆数
The number of partitions of the integer n divided into k parts
-
且n为固定正整数,则R为交换的。
And n is a fixed positive integer , then R is commutative .
-
设n为正整数,a(n)表示n的k次补数。
Let a ( n ) be the k-power complement of a positive integer n.
-
讨论了正整数n的一些带约束条件的分拆问题。
In this paper , the author discuss the partitions of integer n with some conditions .
-
关于正整数n的完备分拆的一些探讨
Some Discussion about the Perfect Partition
-
关于正整数集(a,b,k)型可加划分的一个注解
A Note for ( a , b , k ) - Additive Partition of Positive Integers
-
设n是正整数,s(n)为n的三次方幂补数。
Let n be a positive integer , s ( n ) denotes the cubic complements of n.
-
总假定R为含幺有限交换环,τ为正整数。
Let R be a finite commutative ring with identity , τ be a positive integer .
-
q-正整数是指一个q-多项式关于q的系数都是正整数。
G-Positive integers is defined as the coefficient of a q-polynomials is non-negative .
-
分类器确定正整数为过剩数(abundant)、完全数(perfect)或亏数(deficient)。
The classifier determines if a positive integer is abundant , perfect , or deficient .
-
令v与λ为正整数,K为正整数集。
Let v and λ be positive integers and K be a set of positive integers .
-
设k是正整数,D是极小k边连通简单有向图。
Let k be a positive integer , and let D be a minimally k-edge-connected simple digraph .
-
设d是一个正整数,G是一个(4d+1)-正则图。
Let d be a Positive integer . Let G be a ( 4d + 1 ) regular graph .
-
本文提出了一种以多项式函数为主要工具去求前n个正整数的方幂之和的新方法。
This paper introduced a polynomial function as a main tool in the exponent sum of the first n natural numbers .
-
给图G的每条边都赋予一个正整数权,这样的图称为网络,记为G(w)。
A network G ( w ) is a graph G in which each edge is assigned integer weight .
-
然而对于最一般的情况,即p,q都是不确定的正整数时,其定性性质的讨论还有待深入。
But for the most general case , i.e. , p and q are unspecific integers , its qualitative properties need more consideration .
-
求得方幂和的计算公式,其中at,ht是复数,rt是正整数。
The direct calculating formula of power sum , is obtained . a_t and b_t are complex numbers and r_t is positive integer .
-
对于正整数n,设ZW(n)是n的伪无平方因子函数。
For any positive integer n , let ZW ( n ) denote the pseudo square-free function of n.
-
借助Sperner引理与2-进赋值函数证明:对任何正整数n>6,存在边数为n的特殊多边形,并证明猜想对边数为7的几类典型的特殊多边形成立。
Prove the existence of special n - polygon for any integer n > 6 and that the conjecture holds for polygons with seven sides .
-
这个分红规则叙述如下:每当盈余超过一个给定的正整数b,保险公司就把超出b以上的盈余作为红利支付给股东。
The dividend policy is that when the surplus is bigger than a positive integer b , the insurer pays out all of the surplus over b as dividends .
-
我们知道UDP端口号被定义为一个正整数。
UDP port number is a positive integer value .
-
设n为正整数且n≥2,h为凸形函数,考虑如下n阶线性微分从属关系:并确定此微分从属的最佳控制。
Let n bc an integer number with n ≥ 2 , this paper considers the nth-order linear differential subordination and determines the best dominant of this differential subordination .
-
设F为单位圆盘Δ上的亚纯函数族,a为非零复数,k为一正整数。
Let F be a family of meromorphic functions on the unit disc Δ, let a be a non-zero complex number and k be a positive integer .
-
本文证明了伪对称集存在的一个结果:在N维欧氏空间E ̄N中,对任意适合的正整数m,必定存在包含m个点的E ̄N伪对称集。
In this paper , we are to prove the following theorem : There exists a pseudo-symmetric set which involves m points for any integer number in theN-dimensional Euclidean space .
-
一个图G称为有理的,如果对任一整除的正整数t,G可表示成t个边互不相交的同构因子的并。
A graph G is called rational if for any positive integer t dividing | E ( G ) | , G is the union of t edge-disjoint isomorphic factors .
-
设n为正整数,f(n)是可以用1以及任意多个+号和×号(以及括号)来表示n时所用1的最少的个数。
Let n be positive integer , f ( n ) here refers to the mininum mumber of 1 when n can be expressed by 1 , + ,× and () .