正整数

zhènɡ zhěnɡ shù
  • positive integer
正整数正整数
  1. c可以取a或b,p是一正整数,0

    C may be a or b , p is positive integer , 0

  2. 本文提出了一种P可为任意正整数的T2~p归并树。

    A special T_2p merging tree is worked out where P can be any positive integer .

  3. 也就是a的b次方,而b是个正整数。

    A to the b where b is an integer .

  4. 设N是全体正整数的集合。

    Let N be the set of all positive integers .

  5. 分正整数n为K个部分的分拆数

    The number of partitions of the integer n divided into k parts

  6. 且n为固定正整数,则R为交换的。

    And n is a fixed positive integer , then R is commutative .

  7. 设n为正整数,a(n)表示n的k次补数。

    Let a ( n ) be the k-power complement of a positive integer n.

  8. 讨论了正整数n的一些带约束条件的分拆问题。

    In this paper , the author discuss the partitions of integer n with some conditions .

  9. 关于正整数n的完备分拆的一些探讨

    Some Discussion about the Perfect Partition

  10. 关于正整数集(a,b,k)型可加划分的一个注解

    A Note for ( a , b , k ) - Additive Partition of Positive Integers

  11. 设n是正整数,s(n)为n的三次方幂补数。

    Let n be a positive integer , s ( n ) denotes the cubic complements of n.

  12. 总假定R为含幺有限交换环,τ为正整数。

    Let R be a finite commutative ring with identity , τ be a positive integer .

  13. q-正整数是指一个q-多项式关于q的系数都是正整数。

    G-Positive integers is defined as the coefficient of a q-polynomials is non-negative .

  14. 分类器确定正整数为过剩数(abundant)、完全数(perfect)或亏数(deficient)。

    The classifier determines if a positive integer is abundant , perfect , or deficient .

  15. 令v与λ为正整数,K为正整数集。

    Let v and λ be positive integers and K be a set of positive integers .

  16. 设k是正整数,D是极小k边连通简单有向图。

    Let k be a positive integer , and let D be a minimally k-edge-connected simple digraph .

  17. 设d是一个正整数,G是一个(4d+1)-正则图。

    Let d be a Positive integer . Let G be a ( 4d + 1 ) regular graph .

  18. 本文提出了一种以多项式函数为主要工具去求前n个正整数的方幂之和的新方法。

    This paper introduced a polynomial function as a main tool in the exponent sum of the first n natural numbers .

  19. 给图G的每条边都赋予一个正整数权,这样的图称为网络,记为G(w)。

    A network G ( w ) is a graph G in which each edge is assigned integer weight .

  20. 然而对于最一般的情况,即p,q都是不确定的正整数时,其定性性质的讨论还有待深入。

    But for the most general case , i.e. , p and q are unspecific integers , its qualitative properties need more consideration .

  21. 求得方幂和的计算公式,其中at,ht是复数,rt是正整数。

    The direct calculating formula of power sum , is obtained . a_t and b_t are complex numbers and r_t is positive integer .

  22. 对于正整数n,设ZW(n)是n的伪无平方因子函数。

    For any positive integer n , let ZW ( n ) denote the pseudo square-free function of n.

  23. 借助Sperner引理与2-进赋值函数证明:对任何正整数n>6,存在边数为n的特殊多边形,并证明猜想对边数为7的几类典型的特殊多边形成立。

    Prove the existence of special n - polygon for any integer n > 6 and that the conjecture holds for polygons with seven sides .

  24. 这个分红规则叙述如下:每当盈余超过一个给定的正整数b,保险公司就把超出b以上的盈余作为红利支付给股东。

    The dividend policy is that when the surplus is bigger than a positive integer b , the insurer pays out all of the surplus over b as dividends .

  25. 我们知道UDP端口号被定义为一个正整数。

    UDP port number is a positive integer value .

  26. 设n为正整数且n≥2,h为凸形函数,考虑如下n阶线性微分从属关系:并确定此微分从属的最佳控制。

    Let n bc an integer number with n ≥ 2 , this paper considers the nth-order linear differential subordination and determines the best dominant of this differential subordination .

  27. 设F为单位圆盘Δ上的亚纯函数族,a为非零复数,k为一正整数。

    Let F be a family of meromorphic functions on the unit disc Δ, let a be a non-zero complex number and k be a positive integer .

  28. 本文证明了伪对称集存在的一个结果:在N维欧氏空间E ̄N中,对任意适合的正整数m,必定存在包含m个点的E ̄N伪对称集。

    In this paper , we are to prove the following theorem : There exists a pseudo-symmetric set which involves m points for any integer number in theN-dimensional Euclidean space .

  29. 一个图G称为有理的,如果对任一整除的正整数t,G可表示成t个边互不相交的同构因子的并。

    A graph G is called rational if for any positive integer t dividing | E ( G ) | , G is the union of t edge-disjoint isomorphic factors .

  30. 设n为正整数,f(n)是可以用1以及任意多个+号和×号(以及括号)来表示n时所用1的最少的个数。

    Let n be positive integer , f ( n ) here refers to the mininum mumber of 1 when n can be expressed by 1 , + ,× and () .