广义函数论

  • 网络distribution theory
广义函数论广义函数论
  1. Hida于1975年开创,该理论本质上是一种无穷维的Schwartz广义函数论,有着深刻的物理背景,近年来得到了数学物理界的广泛关注。

    Hida in 1975 . In essence , it is an infinite dimensional Schwartz distribution theory , which has a deepgoing physical background and has been getting much attention in recent years .

  2. 利用复Fourier级数的卷积及广义函数论,推导出圆孔无限大板在边界弯曲时对应于常见3种孔边界条件的挠度解析公式。

    By means of the convolution of the complex Fourier Series and the generalized functions , the deflection analytical formulas are produced for the infinite plates with a unit circle under the boundary loads and the three common conditions at the unit circle edge .

  3. 广义函数论在厚板弹塑性动力分析中的应用

    Application of generalized function to dynamic analysis of elasto-plastic thick plates

  4. 本文定理2对[1]中一重要定理给出了详细的证明,定理3对在局部凸空间和广义函数论中被广泛使用的一个结论给出了构造性的证明。

    In this paper . Theorem 2 gives a detailed proof of an important theorem in Theorem 3 gives a structural proof about a conclusion that is widely used in the theory of local convex space and distribution .