壳层

ké céng
  • shell;lamellae
壳层壳层
壳层[ké céng]
  1. 快速C(60)离子团在固体中的库仑爆炸过程Ⅰ球壳层模型

    Coulomb explosions for swift c_ ( 60 ) Ion-clusters penetrating in solids ⅰ the model of spherical shell

  2. 采用壳层效应屏蔽长度MonteCarlo方法计算溅射产额

    Sputtering yield calculation by Monte Carlo simulation with screening length of shell effects

  3. 所有的卤素都要求得到一个额外的电子来填满P壳层。

    All the halogens require one more electron to complete a P-shell .

  4. P和α引起Al原子内壳层多电离的研究

    Multiple inner-shell ionization of aluminum by proton and alpha particle

  5. 测得的谱显示的振荡结构在硼k壳层吸收边以上延续约300电子伏。

    The oscillating structures were up to 300 eV above the boron K-edge .

  6. 电子碰撞引起的铜元素K壳层电离截面的测量与修正

    Measurement and Correction of K-Shell Ionization Cross Sections of Copper Element by Electron Impact

  7. 我们得到的K壳层总俘获截面是一个表解析达式。

    An analytical expression for total cross section by projectile from the K-shell is obtained .

  8. H~+与C、N、O和Ne原子碰撞中K壳层电子俘获截面的计算

    K-shell electron capture cross sections by protons in c , n , O and NE

  9. C2H4价壳层电离连续区光解离研究

    Study on Photodissociation Dynamics in Valence-shell Continuum Region of C_2H_4

  10. 中Z元素等离子体开M壳层辐射不透明度的细致谱线模型研究

    Studies on the Open-M-Shell Opacities of Mid-Z Plasmas Using Detailed Line Accounting Models

  11. 电子、质子轰击核靶原子K壳层的电离截面初步计算

    A Calculation to Atomic Ionization Cross Section on K-shell when Bombarding a Nuclear Target with Electron and Proton

  12. 此外,当调节金属壳层的厚度时,我们发现?r对近场振幅大小的影响更大。

    Moreover , the effect of ? r is significant on the near-field magnitude when tuning the shell thickness .

  13. 用薄靶厚衬底方法测量电子碰撞引起的K壳层电离截面

    Measurement of K-shell Ionization Cross Sections Caused by Electron Impact Using a Method of Thin Target With Thick Substrate

  14. 实验结果表明,低速高电荷离子与金属表面原子相互作用可有效地激发靶原子或靶离子内壳层电子而发射X射线。

    The results show that inner shell electrons of target atoms are excited , and X-rays ( emitted ) .

  15. 两体自旋轨道耦合力与f(7/2)壳层能谱

    The two-body spin-orbit coupling interaction and the energy spectra of f_ ( 7 / 2 ) shell nuclei

  16. 内壳层旁观洞态对ZnⅡKα和Kβ谱线的影响

    Study on the influence of inner-shell spectator holes to the K_ α and K_ β spectra of Zn ⅱ ions

  17. 带包壳层,The,n,designates,the,shell,它的数在这里,我们在第一层。

    N so that 's what this number is here , we 're in the first shell .

  18. 在无壳层的ZnS:Cu纳米颗粒团簇中,随着Cu离子浓度的增加,发射带向低能量方向移动,且在575nm附近出现了一个相对较弱的发射肩峰。

    For ZnS : Cu nanoparticle clusters , the emission band shifted to lower energy with the increase of Cu2 + concentration .

  19. 通过紫外-可见吸收光谱能够反应出加热过程中Ag壳层的变化。

    The change of the Ag shell with the heating process could be reflected from the UV-vis absorption spectrum .

  20. 在硼-氮纳米管表面,我们观察到了同样的Al完美的同轴、螺旋、多壁且间距相同的圆柱壳层结构及其遗传效应。

    On boron-nitrogen nanotube surfaces , we also found perfect Al coaxial , helical , multishell and equal distance cylindrical structures and heredity effect .

  21. 某一非常薄的壳层dr内,一个原子的概率,你想一个壳层时。

    We 're saying the probability of from the nucleus in some very thin shell that we describe by d r.

  22. 介绍了利用电子轰击核靶原子K壳层电离截面的一种计算方法。

    This article is related to a calculating method of atomic ionization cross section on K - shell when bombarding a nuclear target with electron .

  23. 用能谱仪测量特征X射线,从而导出元素钛和钒的K壳层电离截面。

    K shell ionization cross sections of Ti and V elements from the measured result of K α X rays using the spectrometer are derived .

  24. Cu元素nl壳层能量的计算

    Calculation of nl-Shell Energies of Element Cu

  25. CⅡ离子1s内壳层激发态的结构和衰变特性的理论研究

    Theoretical investigation on level structure of 1s inner-shell excited state and the related decay property of C ⅱ ion

  26. 开壳层体系中的总能量和轨道SCF能量

    Total and Orbital SCF Energies in Open Shell Systems

  27. 对于核壳型Ni/Au磁性金属纳米粒子,包裹Ni核的Au壳层可以有效地减缓Ni核的氧化速度。

    For core / shell Ni / Au nanoparticles , the gold shells could effectively slow down the oxidation of the Ni cores .

  28. CsⅣ离子4d内壳层激发态衰变过程的相对论理论研究

    The theoretical study on the decay processes of the 4d core excited states of Cs ⅳ

  29. 利用M壳层的辐射跃迁率,Coster&Kronig跃迁率和M亚壳层的荧光产额将x射线产生截面转换为M亚壳层电离截面。

    The radiative transition rates and the Coster-kronig yields and M-subshell fluorescence yields were used to convert the X-ray production cross sections into M-subshell ionization cross sections .

  30. 其他原子电子壳层的电子将填补这些空穴,其原子电子位置将重排,并发射X射线和俄歇电子。

    The vacancies in atomic shells give rise to rearrangements in the shells which are accompanied by the emission of X ray and the ejection of Auger electrons .