回归预测

  • 网络regression;Regression Forecasting
回归预测回归预测
  1. 采用与支持向量机模型建立时完全一致的样本和预测变量,建立证据权预测模型和Logistic回归预测模型。

    By using the same sample and forecast variables as support vector machine mode , established weights-of-evidence and logistic regression model .

  2. 借助于虚拟实验设计,建立了叶片终锻件形状优化目标函数与表示预成形毛坯形状的三次B样条曲线的控制点坐标之间的相关关系&多元非线性回归预测模型。

    The optimal arithmetic is selected . By the dummy experiment design , the multivariant nonlinear regression model between the blade final forging shape optimal objective function and the coordinate of the control points of the B-spline to describe the preform shape is built .

  3. 多层次Fuzzy因素的线性回归预测模型

    Linear Regression Forecasting Model of Multilevel Fuzzy Factors

  4. 含FlatFuzzy参数的回归预测模型的探讨

    Study of the regression forecasting model with flat fuzzy parameters

  5. 降水pH值的支持向量回归预测模型构建

    Application of support vector regression to the prediction of pH value in precipitation

  6. Logistic回归预测结果表明,应付能力对精神卫生影响最大。

    Logistic regression predicted that coping ability would be the largest affecting factor on mental health .

  7. GM(1,1)与回归预测相组合在安徽省农民人均纯收入预测中的应用

    Research on Peasants ' per Income Forecast of Anhui Province Based on GM ( 1,1 ) Model and Regression

  8. 本文指出了《应用概率统计》P(155)一元线性回归预测问题的一处错误,给出了正确的结果。

    This paper points out a mistake on page 155 of the book " Applied Probability and Statistics ", shows how the mistake was made in the discussion about the linear regression prediction and rectifies the mistake .

  9. 目的为我国实施《中国POPs类杀虫剂消减和淘汰战略和规划》提供参考依据。方法应用多元线性回归预测我国持久性有机污染物(POPs)卫生杀虫剂使用量与费用。

    Objective To provide evidences for implementing Strategy and Plan about Reduction and Elimination of POPs pesticides in China .

  10. 文章提出了PSO优化参数的SVM回归预测模型,并将其用于短期电力负荷预测。

    A short-term load forecasting model based on SVM is presented in which the parameters in SVM are optimized by Particle Swarm Optimizer ( PSO ) .

  11. 通过与回归预测的结果和实测数据作比较,证实了BP神经网络预测方法在隧道爆破地震效应预测方面应用的可行性。

    On the basis of the comparison with the regression results of measured data , the prediction with BP neutral network is proved to be a feasible method in the effect control of tunnel excavation blasting .

  12. 将DEA方法推广到预测领域可以解决回归预测方法难以计算的多投入多产出的预测问题。

    Extended to the prediction field , DEA methods can solve the prediction problem with multiple inputs and outputs which can not be solved easily by the Regression Analysis method .

  13. 可线性化的含T-Fuzzy数据的非线性回归预测模型

    Nonlinear Regression Forecasting Model with T-Fuzzy Data to be Linearized

  14. 协整回归预测模型充分利用了CPI的先行指标信息,又有效地避免了多元回归预测模型中的自由度过多损失。

    Co-integration regression prediction model takes full advantage of leading indicators of the CPI , but also to avoid excessive loss of freedom in the multiple regression prediction model .

  15. 预测的步骤为:首先采用Box-Jenkins模型、回归预测法和Brown三次指数平滑法分别对天津市的人力人口比值进行预测,并对预测的效果进行评价。

    The forecasting steps is as follow : First , apply Box-Jenkins model , regression forecast model and Brown cubic exponentialsmoothing model to forecast ratio separately and evaluate the forecasting results .

  16. 利用已有的长期观测资料,建立了非线性回归预测模型、指数平滑预测模型、时间序列自回归预测模型、灰色预测模型、BP人工神经网络预测模型。

    At the same time , with the long time monitoring data , some models for deformation prediction of landslide are established such as the nonlinearity regression fitting model , the exponential smoothing model , the time series analysis model , the gray model and the BP neural network model .

  17. 本文开展了平原水网地区航道网规划方法的研究,提出了采用固定资产投资完成额与货运量回归预测模型;平均信息量用户最优分布模型预测货物O-D的分布;

    It is proposed that the fixed capacity investment and cargo discharge regression forecasting model and the optimal average information customer distribution model can be used to predict the cargo O-D distribution .

  18. 结果显示,该模型预测效果明显优于传统的线性自回归预测模型,各月平均的平均绝对误差(MAE)和均方误差(RMSE)达到41.8和55.7。

    Results show that the RBFNN is obviously superior to the traditional linear model , and its MAE ( mean absolute error ) and RMSE ( root mean square error ) are41.8 and55.7 , respectively .

  19. 本文根据各种燃料成本与用电成本的实际数据,提出用基因表达式编程(GEP)对其预测,挖掘出它们的函数关系式,并和多元线性回归预测结果进行比较。

    According to the data cases of practical problem between the costs of fuels and the cost of spending electricity , GEP mines the function express between data input and data output , and it compares with the multiple variables linear regression in terms of accuracy and efficiency .

  20. 人口自适应回归预测模型与实证分析

    An Adaptive Regression Model of Population Prediction and Its Experiential Studying

  21. 热输管线油电消耗的回归预测

    Regression Prediction of Oil / Power Consumption in Heated Oil Pipeline

  22. 河流入渗量灰色回归预测模型

    Research on Grey regression Forecast Model of Seepage Volume of River

  23. 基于支持向量机的回归预测和异常数据检测

    Regression Forecast and Abnormal Data Detection Based on Support Vector Regression

  24. 利用回归预测技术进行港口吞吐量预测的方法研究

    Research on Port Handling Capacity Forecasting Method by Regression Forecasting Technology

  25. 市盈率的模糊线性回归预测模型研究

    Study on fuzzy linear regression model prediction about P / E

  26. 平板硫化机热板温度场的多元回归预测

    The multivariate regress forecast of platen tem . field of press

  27. 基于模糊模式识别的支持向量机的回归预测方法

    A SVM regress forecasting method based on the fuzzy recognition theory

  28. 用逐步回归预测棉铃虫发生期和发生量

    Forecast of occurrence term and amount for bollworm with successive regression

  29. 台风登陆华南年频次的投影寻踪回归预测模型

    Forecasting model of numbers of landed typhoon based on Projection Pursuit Regression

  30. 名优茶采摘高峰期的回归预测

    Regression Forecast on the Picking Peak Period of Famous and High-quality Tea