化学键

huà xué jiàn
  • chemical bond
化学键化学键
化学键[huà xué jiàn]
  1. DNA中的化学键

    On the Chemical Bond in DNA

  2. 化学键较弱的Cr(Ⅲ)化合物具有较高的富集效率;

    Chromic (ⅲ) compounds with weaker chemical bond had higher bioaccumulation efficiency .

  3. 分子轨道理论和周环反应:关于化学键和芳香性的现代概念

    Molecular Orbital Theory and Pericyclic Reactions : Modern concepts of bonding and aromaticity .

  4. R型六方铁氧体化学键性质和穆斯堡尔谱位移研究

    Investigation of Chemical Bond Properties and Mossbauer Isomer Shifts in R-Type Hexagonal Barium Ferrites

  5. X射线光谱学与化学键

    X - ray spectroscopy and chemical bonding

  6. 3d过渡金属碳化物相稳定性和化学键的第一性原理研究

    A First Principle Study on the Phase Stability and Chemical Bonding of the 3d Transition Metal Carbides

  7. 夹心羰基化合物(C5H5)2Ti(CO)2的电子结构及化学键研究

    Electronic Structure and Chemical Bond of ( C_5H_5 ) _2Ti ( CO ) _20

  8. 用Fourier变换红外光谱和激光共焦Raman光谱对粉体烧结后样品的化学键及物相进行了表征。

    The samples were characterized with a Fourier transform infrared spectroscope and laser micro Raman spectroscope .

  9. 通过XRD、SEM和FT-IR对制取的化学键键合的二氧化钛/苎麻纤维功能型复合材料进行了表征。

    The titanium dioxide / ramie fiber composites were characterized by XRD and SEM techniques .

  10. C原子和Ti原子之间形成了很强的化学键,而Si原子和Ti原子之间的相互作用则比较弱。

    Ti and C atoms form a strong chemical bond while the interaction between Ti and Si is rather weak .

  11. 乙炔银(Ag2C2)分子中化学键的性质

    The nature of the chemical bond in Ag _2c_2 molecule

  12. 随着热解温度的升高,生物油中含氧化合物组分减少,芳香化合物的组分增加,热解温度的升高促进了化学键的断裂,形成更多的H2和CO等。

    With the temperature increasing , oxygen-containing compounds in bio-oil decreased , while aromatic compounds increased .

  13. FT-IR分析结果表明催化剂表面生成了Ti-O-N化学键。

    FT-IR result showed chemical band Ti-O-C was produced .

  14. 稀土金属间化合物Ln4Ni2C5的化学键研究

    Inverstigation Of Chemical Bond for Rare-Earth Intermetallic Compounds Ln_4Ni_2C_5

  15. SiCw/涂层/TZP陶瓷复合材料界面化学键的XPS和IR研究

    XPS and IR study on chemical bonds at the interfaces of sic_w / coatings / tzp Composites

  16. (Nb,Ti)C-Ni金属陶瓷中包裹结构的形成机理及其化学键研究

    Study of formation mechanism of surrounded structure and its chemical bond in ( nb , ti ) c-ni cermet

  17. 在质子介质(H2O-EtOH)中,HA在改性前后其P(2P)电子结合能基本不变,显示在修饰前后P未参与新化学键形成;

    That the EBE values of PIP in HA modified in proton medium ( H2O-EtOH ) remain same , showing no formation of chemical bond ;

  18. YBCO超导体中化学键与电子结构

    Chemical bonds and electronic structures in YBCO superconductors

  19. 用红外光谱研究了正丁醇脱水剂与Zr(OH)4-Al(OH)3凝胶的表面化学键。

    The surface chemical bonding between Zr ( OH ) 4-Al ( OH ) 3 gels and n-butanol , a dehydrator , was determined by FT-I.

  20. 晶体中化学键的研究Ⅳ.具有四方CaC2结构的二元化合物

    The Study of the Chemical Bond in Crystals IV Tetragonal CaC_2 Type Compounds

  21. 在8n+2m规则的基础上,提出了ABn型分子化学键和几何结构的一种简便方法。

    On the basis of 8n + 2m rule , a simple method is proposed for deducing the bonding and geometric structure AB , molecules .

  22. 因此,CBF的絮凝作用方式为吸附、中和及化学键合。

    So , flocculation modes of CBF are adsorption , neutralization and chemi-bonded .

  23. FT-IR分析表明,硬脂酸与硬石膏的表面以化学键结合。

    The FT-IR indicated that the modifers were combined to the surface of anhydrite powder by chemical bond .

  24. FT-IR光谱表明泛酸分子与纳米Fe3O4表面羟基发生化学键合;

    FT-IR spectrum shows D-pantothenic acid molecule was covalent bonds with the magnetite surface .

  25. 射频波就是电磁场,但与X射线或伽玛射线辐射等电离辐射不同的是,射频波不会打破化学键,也不会给人体造成电离辐射伤害。

    Radiofrequency waves are electromagnetic fields , and unlike ionizing radiation such as X-rays or gamma rays , can neither break chemical bonds nor cause ionization in the human body .

  26. 利用Raman和XPS光谱分析类金刚石膜在退火过程中的化学键合结构变化。

    Raman and XPS spectra were used to characterize the change of the chemical bonding structure of the diamond-like films annealed at different temperatures .

  27. 以上结果表明,SA与HA表面元素形成了化学键,从而接枝在了HA表面。

    The above results show that SA graft on the HA surface by reaction of elements of HA surface with it to form chemical bond .

  28. 用XRD,SEM,XPS及拉曼和红外吸收光谱对薄膜的结构、成分和化学键等进行了研究。

    The structure , composition and chemical bonding state of the obtained films are investigated using XRD , SEM , XPS , Raman spectra and FTIR .

  29. SAMs以化学键为驱动力,重现性较差;

    Driving force of SAMs is chemical bond , so their repetition is poor ;

  30. 本文制得的PET/SiO2、PET/TiO2复合材料中,没有新的化学键形成,纳米颗粒与PET的相互作用主要是物理作用。

    In the composites of PET / nano-SiO_2 and PET / nano-TiO_2 there was no new chemical bond and the main interaction , between nanometer particle and PET , was physical .