贝叶斯分类
- 网络Bayesian Classification;bayes classifier;Naive Bayesian classification
-
基于贝叶斯分类的水平集MR图像分割方法
A Level Set Method Based on Bayesian Classification for Image Segmentation in MRI
-
面向CRM的贝叶斯分类算法及并行化研究
The Parallel of Bayesian Classification Algorithms for CRM
-
基于RoughSet的加权朴素贝叶斯分类算法
Weighted Naive Bayes Classification Algorithm Based on Rough Set
-
SVM回归与朴素贝叶斯分类相结合的变压器故障诊断
Transformer diagnosis by Naive Bayesian classifier combing with SVM regression
-
一种HTML文档的朴素贝叶斯分类算法
An improved naive bayesian categorization algorithm for HTML
-
基于一类SVM的贝叶斯分类算法
A Bayesian Classification Algorithm Based-on One-Class SVM
-
贝叶斯分类法在MCS移动路径预测中的应用
Application of Bayes Classification in Forecasting the Trajectories of MCS
-
介绍分析聚类分析中的k-means算法和朴素贝叶斯分类算法;
Introducing and analyzing k-means algorithms of clustering algorithms and Naive Bayesian Classifier algorithm .
-
基于Dirichlet分布的贝叶斯分类算法的手写数字字符识别
Handwritten digital recognition based on Dirichlet distribution and Bayesian classifier
-
该模型以实时抽样流量作为数据来源,采用关联分析法提取可信IP列表用于数据包的过滤,并利用贝叶斯分类算法对数据包的危险等级进行评估。
Based on real-time sample traffic , this model extracts trusted IP list by association analysis to filter , and evaluates packets danger degree by adopting bayes algorithm .
-
本文中用到的方法有SVM分类方法、贝叶斯分类方法、简单向量距离法和多组判别分析法。
In this paper it uses SVM text classification , multi-group distinguishing text classification , Naive Byes text classification and simple vector distance text classification .
-
一种采用LLE降维和贝叶斯分类的多类标学习算法
Multi-label learning by LLE dimension reduction and Bayesian classification
-
现有的分类预测的方法有许多种,常见的有决策树算法(C4.5)、贝叶斯分类算法、BP算法与支持向量机等。
There are many classification methods to forecast such as decision tree algorithm ( C4.5 )、 Bayes algorithm 、 BP algorithm and SVM .
-
借鉴K-means算法,用朴素贝叶斯分类算法来解决分类问题,既能发挥K-means算法的局部搜索能力,又能提高朴素贝叶斯分类的准确度,从而更好地解决分类问题。
The local searching ability of k-means algorithm is exerted , and the precise of Naive Bayesian Classifier improved . It can solve classification problem effectively .
-
实验表明,用贝叶斯分类方法比传统的Fisher分类算法能更好地对手写数字字符进行分类识别,且在众多领域中有较大的应用价值。
Experimental results show that the arithmetic is better than traditional Fisher classifying arithmetic to recognize handwritten numbers . It has been used successfully in many fields .
-
提出一种基于一类支持向量机(one-ClassSVM)的贝叶斯分类算法,该算法用一类SVM对类条件概率密度进行估计以构造贝叶斯分类器。
A Bayesian classification algorithm based on one-class SVM is presented . It constructs the Bayesian classifier using the classes ' conditional density estimated by one-class SVM .
-
为了降低朴素贝叶斯分类模型的独立性假设约束,提出一种混合式朴素贝叶斯分类模型(MBN:MixedNaiveBayes)。
In order to decrease the attribute independence assumption which is made by Naive Bayesian , a new Bayesian model MBN ( Mixed Naive Bayes ) is introduced .
-
本文在原有的贝叶斯分类的基础上进行了改进,提出了一种基于Dirichlet分布的贝叶斯分类模型,对手写数字字符进行识别的算法。
This paper introduces a Bayesian classifying model based on the Dirichlet prior distribution which is improved by existed Bayesian model to recognize handwritten numbers .
-
基于RoughSet的属性重要性理论,提出了基于RoughSet的加权朴素贝叶斯分类方法,并分别从代数观、信息观及综合代数观和信息观的角度给出了属性权值的求解方法。
Based on the attributes ' importance degree theory of rough set , a new weighted naive Bayes method is proposed . Methods for determining the weights of attributes in the algebra view , informational view and both of them are developed respectively .
-
模糊角分类神经网络模型根据用户信息所落入的k最近邻的样本泛化空间来进行分类,随着k值的增大,其分类效果趋近于贝叶斯分类算法。
FCC neural network model works according to the k-nearest neighbor samples ' generalization space which users ' information falls into . With the increasing of value k , the classification effect becomes close to that of Bayes classification algorithm .
-
将聚类算法引入到朴素贝叶斯分类研究中,提出一种基于聚类的朴素贝叶斯分类算法(CNBC)。
A Naive Bayesian classification based on clustering principle ( CNBC ) by introducing clustering algorithm into Naive Bayesian classification .
-
根据RoughSet的相关理论,提出了基于条件信息熵的自主式朴素贝叶斯分类方法,该方法结合了选择朴素贝叶斯和加权朴素贝叶斯的优点。
Based on the theory of rough set , a new Nave Bayes method named Conditional Information Entropy-based Algorithm for Self-learning Nave Bayes ( CIEBASLNB ) was proposed , which combined the merits of selective Nave Bayes ( SNB ) and Weighted Nave Bayes ( WNB ) .
-
AFCAS系统采用了边界链码和贝叶斯分类的图像识别技术和基于ADO的数据库技术。
The AFCAS System adopts the image recognition technology of Region Chain Code and Bayesian Classification and ADO-Based database technology .
-
本文通过对增量朴素贝叶斯分类算法的研究,将增量贝叶斯分类器应用于主题爬虫主题相关度的计算中。最后采用C++语言在Linux环境下对主题爬虫进行了实现。
By the research of incremental bayes classifier algorithm in this thesis , it would be used in the topic relevant calculation of the topic crawler . Finally , implement the topic crawler under the circumstance of Linux by C + + language .
-
数据集成过程中,利用基于权值的朴素贝叶斯分类方法对承载异构数据的XML文档进行集成,其目标是向态势感知传感器的上层,也就是更高层应用用户提供具有统一格式的数据。
In the process of data integration , the method of weight based na ? ve Bayes classifier integrates the XMLs contains heterogeneous data , the target of which is to provide uniform format data to higher class user which is higher class of situational awareness sensor .
-
同时,结合数据挖掘工具weka证明,在不断对贝叶斯分类进行动态调整之后可使分类结果达到最优。
Meanwhile , the combination of data mining tools that weka , constantly on the Bayesian classifier can be dynamically adjusted to achieve optimal classification results .
-
通过分析目前回转窑过程控制技术的发展趋势和特点,设计了一种基于ICA贝叶斯分类的回转窑喂煤预测模型,并用于现场控制。
Based on analyzing both the advantages and disadvantages of current control technology of rotary kiln , we designed a coal feed predictive module in rotary kiln based on bayesian classification , and applied it to field control .
-
目前,国内外学者们已经研究出了多种检测方法,主要包括贝叶斯分类,数据挖掘,专家系统,神经网络,人工免疫系统,Petri网,Markov链,自治Agent,支持向量机(SVM)等方法。
At present , domestic and foreign scholars have developed a variety of detection methods , mainly including Bayesian classification , data mining , expert systems , neural networks , artificial immune systems , Petri nets , Markov chains , autonomous Agent , support vector machines ( SVM ) .
-
文本分类用的是简单的贝叶斯分类方法,在特征提取的过程中,采用TF-IDF值作为特征选择的标准,并用三元组中心词来限定选取范围,达到自然降维的目的。
Text classification takes simple Bayes classification method . The feature extraction use TF-IDF as selection criteria , and by sentences ' three-tuple words to define selection range , which achieve the purpose of natural dimension .
-
本文引入统计学中的Kullback-Leibler距离来衡量属性的重要度,提出基于KL距离的加权朴素贝叶斯分类算法(AWNB-KL),提高了朴素贝叶斯算法的性能。(3)实际运用方面。
In this thesis , Kullback-Leibler distance is introduced to value the importance of each at-tribute . A new algorithm called the weighted Naive Bayesian based on Kullback-Leibler distance ( AWNB-KL ) is proposed , and the experiment shows its great performance . ( 3 ) Practical application .