碲化铋

  • 网络bismuth telluride
碲化铋碲化铋
  1. 他们能工作是因为像碲化铋这样的材料,如果在他们的一端比另一端热,那么内部会产生一个电势差,这可用于驱动外部电路中通过的电流。

    They work because certain materials , such as bismuth telluride , generate an electrical potential difference within themselves if one part is hotter than another . That can be used to drive a current through an external circuit .

  2. 第三个目标、高效的设计,包括三明治式的结构,纳米级碲化铋在两个铜片之间,并封闭上面的铜片(一面覆盖吸光的氧化物),碲化铋则在真空中,铜片传导热量迅速到碲化铋。

    The third objective , efficient design , involved sandwiching the nanostructured bismuth telluride between two copper plates and then enclosing the upper plate ( the one coated with the light-absorbing oxides ) and the bismuth telluride in a vacuum . The copper plates conducted heat rapidly to and from the bismuth telluride , thus maintaining the temperature difference .

  3. 利用区熔法、机械合金化、放电等离子烧结(SPS)技术、热压法等多种工艺制备了p型碲化铋基热电材料。

    P-type Bi_2Te_3-based thermoelectric materials were fabricated by various methods , such as zone-melting , mechanical alloying , spark plasma sintering ( SPS ) and hot-pressing .

  4. 本文首次研究了电化学原子层外延(ECALE)法室温沉积碲化铋纳米薄膜的过程。ECALE是原子层外延的电化学模拟。

    Deposition of bismuth telluride thin film by electrochemical atomic epitaxy ( ECALE ) was firstly reported in this paper .

  5. 电化学生物传感器电化学原子层外延法制备碲化铋薄膜

    Preparation of Bismuth Telluride Thin Film by Electrochemical Atomic Layer Epitaxy

  6. 碲化铋基热电薄膜制备及其热电性能研究

    Fabrication of Bi_2Te_3-Based Thermoelectric Thin Films and Study on the Performances

  7. 碲化铋热电材料的制备及其微成型技术研究

    Preparation and Microfabrication of Bismuth Telluride Thermoelectric Materials

  8. 在200-400K温度范围内使用的主流热电材料是碲化铋基热电半导体。

    The prominent species used for 200-400 K range come from bismuth telluride based semiconductors .

  9. 并探讨了铋、碲化铋等纳米材料的磁阻效应。

    And , magnetoresistance ( MR ) effect of bismuth , bismuth telluride , and so forth , has been studied .

  10. 当冷面温度固定在50℃,作者测试了一对碲化铋温差电单偶热电转换效率随热面温度变化的规律,结果显示其热电转换效率呈近似线性增长。

    Fixed the cold side temperature at 50 ℃, it was tested the dependence of maximum efficiency of a BiTe unicouple on hot side temperature . Test results show that the maximum conversion efficiency increases linearly .

  11. 热面温度500℃,冷面温度50℃时,碲化铅/碲化铋级联温差电单偶的最大热电转换效率测试结果为8.45%。

    The maximum conversion efficiency of PbTe / BiTe cascade unicouple is 8.45 % , when the cold and hot side temperature is 50 ℃ and 500 ℃, respectively .