脱嵌

  • 网络disembedding
脱嵌脱嵌
  1. 锂离子电池负极材料Li(2.5)Cu(0.5)N的Li脱嵌性质

    Lithium Extraction Properties in Anode Material Li_ ( 2.5 ) Cu_ ( 0.5 ) N for Lithium Ion Batteries

  2. Sol-Gel合成LiMn2O4及其锂离子脱嵌/嵌入性能与结构的研究

    Sol-Gel Synthesis of LiMn_2O_4 and Relationship between Extraction-Insertion of Lithium Ion and Structure

  3. LiMn2O4的热压合成及锂脱嵌研究

    Study on LiMn 2O 4 synthesized by hot pressing method and on lithium getting off the products

  4. 用XRD衍射实验研究了脱嵌锂对LiB化合物结构的影响,并用SEM实验观察了LiB化合物在充放电过程的微观形貌的变化。

    The influence of extraction-insertion of lithium ions from-into the LiB compound on the structure and microstructure is studied by XRD and SEM .

  5. Li3V2(PO4)3电极过程及其锂离子脱嵌动力学研究(Ⅰ)

    Investigations on the Electrode Process and Kinetics of Li-ion Extraction / Insertion in Li_3V_2 ( PO_4 ) _3 ( I )

  6. 梯度材料LiNi(1-y)CoyO2脱嵌锂的机理探讨

    Study on the mechanics of the gradient cathode material LiNi_ ( 1-y ) Co_yO_2 in lithium ion battery

  7. 结果表明,在这种体系中发生的不完全是锂离子脱嵌反应,同时包含着SEI膜的沉积-溶解过程。

    The result showed there were both lithiation / delithiation of Li-ion and deposit / dissolve of SEI actions in the full potential area .

  8. GaAs、GaSb、InP和InAs的脱嵌锂特性比较相似,充放电过程可能对应于合金化与去合金化过程。

    The electrochemical characteristics of GaAs , GaSb , InP and InAs are greatly similar . The charge and discharge behavior probably corresponds to alloying and de-alloying process .

  9. 根据量子化学计算结果,在Li~+脱嵌的电荷转移过程中,电荷不是象传统观点认为的那样由Mn来承担,而是由阴离子O来承担,所以阴离子在Li~+脱嵌过程中起着关键的作用。

    The first-principal calculation indicated in the course of Li intercalation the charge transferred to O mostly but for Mn which was taken for granted by traditional theories , that is to say , the anion played a most important role in the material .

  10. 探讨了合成工艺条件对Li3V2(PO4)3正极材料的物理和电化学性能的影响,并初步研究了锂在Li3V2(PO4)3中的脱嵌热力学和动力学。

    The effects of the synthesis parameters on the physical and electrochemical properties of Li3V2 ( PO4 ) 3 cathodic materials have been discussed in detail .

  11. 考察复合材料在锂离子电池中的电化学性能,交流阻抗研究揭示复合材料上形成了稳定的固体电解质相界面膜(SEI),锂离子能可逆地嵌入/脱嵌。

    Ac impendence spectra revealed that there is a fine solid electrolyte interphase film ( SEI ) on the surface of the composites , the fact shows that lithium ion can reversibly insert / extract the Electrode .

  12. 此外,我们采用Teflon模拟电池研究了Li+在两种不同结构碳材料中的嵌入-脱嵌效果,发现碳材料的形貌和结构对储锂性能有着重要影响。

    The insertion-extraction performance of Li + in two kinds of carbon materials was investigated by using a Teflon battery , and it was found that the Li + storage property strongly depended on their morphology and structure . 4 .

  13. 循环伏安法分析结果证明材料具有良好的锂离子脱嵌可逆性。

    CV analysis demonstrated good reversible lithium insertion / de-insertion ability .

  14. 这种无定形态允许大量锂离子的脱嵌,但是在最初的几个循环会发生结构重排。

    However , it undergoes the structure rearrangement in the initial cycles .

  15. 表明该电极具有良好的锂离子脱嵌能力。

    The results showed that this electrode had good lithium insertion / de-insertion capability .

  16. 这使得材料在锂离子反复嵌入/脱嵌过程中结构能够保持稳定。

    This may help to make the materials more stable to the lithium repeated intercalation / de-intercalation .

  17. 对该类化合物的脱嵌铿机理以及进一步提高其电化学性能的研究尚需更加深入细致的工作。

    A further study on these materials needs to clarify the insertion-desertion mechanism of lithium and improve their electrochemical performances .

  18. 尚未观察到反向击穿现象,可能原因是,在一定的反向偏压下的离子脱嵌使得它由部分氧化态(导电态)转变为还原态(绝缘态);

    The possible reason is that the conducting partial oxidized state is reduced into insulating reduced state un-der the applied reverse bias .

  19. 这种非锂离子脱嵌过程的存在是造成最初几次充放电容量大于理论容量的原因之一。

    The existence of non - lithiation / delithiation of Li-ion is the main reason of the phenomenon that discharge capacity is more than the charge capacity .

  20. 锂离子蓄电池是以锂离子在碳负极和嵌入化合物正极中的嵌入和脱嵌为原理发展起来的一种新型蓄电池。

    Lithium ion rechargeable battery is developed based on the principle of lithium ion intercalation and deintercalation on a carbon negative electrode and an intercalation compound positive electrode .

  21. 锂离子从尖晶石晶格中的脱嵌分为两步,尖晶石型锂锰氧化物的容量损失主要发生在高电势区即反应的第二步。

    The results displayed that the electrochemical oxidation and reduction for the spinels could be divided into two steps , Mn dissolution mainly occurred at the second step ( reaction ⅱ - high voltage region ) .

  22. 对锂离子正极材料LiFePO4的性能、结构,锂离子的脱嵌机制,制备方法,掺杂改性等进行了详细的阐述。指出了锂离子电池正极材料LiFePO4良好的应用前景。

    Detailed description is made of the performance , the structure , Li ion extraction-insertion mechanism , preparation method , and the doping modification of LiFePO_4.The promising future application of LiFePO_4 lithium-ion battery cathode material is also pointed out .

  23. 然而粘结剂的堵塞和固相中的扩散阻力抑制了吸附剂的吸附特性,且在Li+的脱嵌过程中,锰的变价导致吸附剂容易发生溶损。

    However , the blockage of binder and the diffusion resistance in solid phase suppress the adsorption capacities of adsorbents , and the variable valence of manganese is liable to dissolution in the Li + extraction / insertion process .

  24. 关健在于寻找合适的电极材料,使得锂离子电池具有足够高的储锂量和很好的锂脱嵌可逆性,以保证电池的高电压、大容量和长循环寿命的要求。

    The key step is to seek for more suitable electrode materials , which should store enough lithium and have excellent reversibility of lithium intercalation / extraction in order to fulfill the cell performance of high voltage , high energy density and excellent cycle life .