笛卡尔乘积

  • 网络cartesian product;cross join
笛卡尔乘积笛卡尔乘积
  1. 我们研究了该函数的一些特性并证明了它的Hausdorff维数为N。第二类为中分(1-2β)康托集合的笛卡尔乘积。

    We explore its properties and show it has Hausdorff dimension N. The second one is related to the Cartesian product of the middle - ( 1-2 β) Cantor sets .

  2. 这m个Borel函数在对应Lebesgue可测集下的逆像构成这n个纯策略空间的笛卡尔乘积的一个划分,并且每n-1个纯策略空间的笛卡尔乘积都具有有限正Lebesgue测度。

    All the inverse image formed by those Borel functions under corresponding Lebesgue measurable sets generate a partition of the Cartesian product . Let Cartesian product of any n-1 spaces of pure strategies have finite positive Lebesgue measure .

  3. 笛卡尔乘积图的超级3-限制边连通性

    On the Super 3-restricted Edge Connectivity of Cartesian Product of Graphs

  4. 笛卡尔乘积图与直接乘积图的限制边连通性

    Restricted Edge Connectivity of Cartesian Product and Direct Product Graphs

  5. 完全图与完全偶图的笛卡尔乘积的联结数

    The binding number of Cartesian product of complete graphs and complete bipartite graphs

  6. 一类笛卡尔乘积图的等周数

    Isoperimetric number of a kind of Cartesian product graph

  7. 路或圈的笛卡尔乘积图的支撑树数

    The Numbers of Spanning Trees in the Cartesian Product Graphs of Paths or Cycles

  8. 纯策略空间的笛卡尔乘积的不同分块中的纯局势一般具有不同的博弈结果。

    Pure situations in different blocks of the Cartesian product have different game results , generally .

  9. 一个立方体的每个数据点或单元是它的维成员的笛卡尔乘积。

    Each data point or cell of a cube is the Cartesian product of members of its dimensions .

  10. 其次讨论了图的邻域完整度的Nordhaus-Haddum问题,给出了一些笛卡尔乘积图和联图的邻域完整度,并给出了图的邻域完整度与图的最大边数的关系;

    Thirdly , the relationship between the vertex-neighbor-integrity of the graph and the maximum edges number of the graph is studied .

  11. 一个连接是两个行集的笛卡尔乘积,谓词连接作为一个过滤结果应用。

    A join is a Cartesian product of two row sets , with the join predicate applied as a filter to the result .

  12. 本文证明了路与回路的多重笛卡尔乘积的联结数的一个定理,并给出了若干多重乘积图的联结数的极限性质。

    In this paper , A theorem for the binding number of multiple cartesian product of path and circuits is proven , and some limit properties of the binding number of multiple product graphs are presented .