积分第一中值定理
- 网络The First Mean Value Theorem of Integral;the first integral mean value theorem
-
在条件完全相同的情况下改进积分第一中值定理,并利用变上限积分函数和拉格郎日中值定理证明该定理,并给出积分第一中值定理的几个推广。
Using variable upper limit integration and Lagrange mean value theorem , this article proves the first mean value theorem under the same condition and give several spread of the first integral mean value theorem .
-
微分中值定理与积分第一中值定理的关系
The Relationship Between Differential Mid-value Theorem and the Frist Intergration Mid-value Theorem
-
关于积分第一中值定理的一些探讨
Some Probing of Intermediate Value Theorem in Integral
-
本文就积分第一中值定理给出了一个简单的证明。
This paper gives a simple proof of the first mid - value theorem of Integral .
-
对微分中值定理和积分第一中值定理的关系进行了探讨。
This paper has studied the relationship between the differential mid-value theorem and the first intergration mid-value theorem .
-
证明关于积分第一中值定理的中间点ξ的渐近性质的一般结果。
The general result of the asymptotic property of the intermediate value of the mean value theorem for the integrals is proved .
-
研究积分第一中值定理,获得了其中值渐近性的一个新结果。
Study about the first mean value theorem for integrals , which obtain a new results on the mean value asymptotic behavior .
-
本文建立了两类可积函数的积分第一中值定理的推广形式,推广了已有结论。
Two kinds of generalizations of the first mean value theorem of integral for integrable functions with different properties are established in the paper , the results extend the previous conclusions .
-
本文重新表述了定积分第一中值定理的证明,并改进了该定理,对于改进了的定积分第一中值定理还给出了证明及一些应用实例。
In this paper , we prove the first mean value theorem for definite integrals newly , introduce some betterment with its applications of the first mean value theorem for definite integrals .
-
二重积分的第一中值定理
He first mean value theorem of the double integrals
-
通过构造积分上限函数,给出积分第一中值定理的另一证法,并结合微积分中值定理证明积分等式、积分不等式与定积分的中值命题。
The essay builds the integral upper limit function to obtaining other proof about theorem of integral first median value , and combine with theorem of calculus median value to proving Integral equality , inequality and median proposition .
-
对积分中值定理中间点的渐近性进行研究,给出了推广的积分第一中值定理的中间点的渐近性的一个公式。
This paper presents a generalization of mean value theorem for integrals and discusses the asymptotic properties of mean value of mean value theorem for integral .