矩阵力学

  • 网络matrix mechanics;Heisenberg
矩阵力学矩阵力学
  1. 矩阵力学与波动力学的建立及其启示

    The establishment of matrix mechanics and wave mechanics and the enlightenment

  2. 对应原理在矩阵力学建立过程中的作用

    On the Correspondence Principle and the Foundation of Matrix Mechanics

  3. 海森堡矩阵力学体系的形成

    The formation of W. Heisenbergs matrix mechanics system

  4. 海森伯矩阵力学和测不准关系的产生及其哲学贡献

    The Generation of Heisenberg Matrix Mechanics and Uncertainty Relations and Their Impact on Philosophy

  5. 本文根据物理学史资料,较为详细地给出了量子力学的两种表述形式,即矩阵力学与波动力学的基本理论的建立过程。

    The establishment of the basic principles of matrix mechanics and wave mechanics is fully described .

  6. 对称矩阵力学模型

    Dynamic Model for Symmetric Matrices

  7. 创立量子力学的睿智才思(续2)&纪念矩阵力学和波动力学诞生80~81周年

    On wisdom in founding the quantum mechanics & The 80 ~ 81 anniversary of the birth of matrix-and wave-mechanics

  8. 将密度函数理论发展用于化学键定量计算,这是一种既非矩阵力学亦非波动力学的新的量子力学第一原理方法;

    Density functional theory is developed to calculate quantitatively the chemical bond . The theory is a new ab initio method other than matrix mechanics and wave mechanics .

  9. 并在此基础上提出了相关矩阵性质的力学意义及运用。

    On the basis of it the mechanics applications of matrix character are put forward .

  10. 同时本文借助矩阵变换的计算力学方法,考虑进了车轮外倾角和前束角,准确的对转向车轮在转向时的运动变化进行理论分析计算。

    At the same time , we academic analyze and compute the steering wheel during the vehicle turnaround using the transform matrix method considering the camber angle and toe angle .

  11. 化学键单元模拟了碳纳米管原子间碳-碳化学键的力学行为,单元的刚度矩阵通过联系分子力学与连续介质力学而得到。

    Chemical bonds between carbon atoms are modeled by the chemical bond elements . The constants of the sub-stiffness matrix are determined by using a linkage between the molecular mechanics and continuum mechanics .

  12. 考虑了弹塑性矩阵、材料的力学性能参数随温度变化的因素,从热弹塑性本构理论出发,应用热弹塑性增量理论建立了热弹塑性有限元方程。

    And then , the change of elastoplastic matrix , parameters of material mechanics performance with temperature were considered , from thermal elastoplastic constitutive relation and applying the theory of thermal elastoplastic increment , the theoretical finite element equation was established .

  13. Dirac矩阵和Pauli矩阵在塑性力学中的应用

    The Application of Dirac Matrices and Pauli Matrices for the Theory of Plasticity