矩阵力学
- 网络matrix mechanics;Heisenberg
-
矩阵力学与波动力学的建立及其启示
The establishment of matrix mechanics and wave mechanics and the enlightenment
-
对应原理在矩阵力学建立过程中的作用
On the Correspondence Principle and the Foundation of Matrix Mechanics
-
海森堡矩阵力学体系的形成
The formation of W. Heisenbergs matrix mechanics system
-
海森伯矩阵力学和测不准关系的产生及其哲学贡献
The Generation of Heisenberg Matrix Mechanics and Uncertainty Relations and Their Impact on Philosophy
-
本文根据物理学史资料,较为详细地给出了量子力学的两种表述形式,即矩阵力学与波动力学的基本理论的建立过程。
The establishment of the basic principles of matrix mechanics and wave mechanics is fully described .
-
对称矩阵力学模型
Dynamic Model for Symmetric Matrices
-
创立量子力学的睿智才思(续2)&纪念矩阵力学和波动力学诞生80~81周年
On wisdom in founding the quantum mechanics & The 80 ~ 81 anniversary of the birth of matrix-and wave-mechanics
-
将密度函数理论发展用于化学键定量计算,这是一种既非矩阵力学亦非波动力学的新的量子力学第一原理方法;
Density functional theory is developed to calculate quantitatively the chemical bond . The theory is a new ab initio method other than matrix mechanics and wave mechanics .
-
并在此基础上提出了相关矩阵性质的力学意义及运用。
On the basis of it the mechanics applications of matrix character are put forward .
-
同时本文借助矩阵变换的计算力学方法,考虑进了车轮外倾角和前束角,准确的对转向车轮在转向时的运动变化进行理论分析计算。
At the same time , we academic analyze and compute the steering wheel during the vehicle turnaround using the transform matrix method considering the camber angle and toe angle .
-
化学键单元模拟了碳纳米管原子间碳-碳化学键的力学行为,单元的刚度矩阵通过联系分子力学与连续介质力学而得到。
Chemical bonds between carbon atoms are modeled by the chemical bond elements . The constants of the sub-stiffness matrix are determined by using a linkage between the molecular mechanics and continuum mechanics .
-
考虑了弹塑性矩阵、材料的力学性能参数随温度变化的因素,从热弹塑性本构理论出发,应用热弹塑性增量理论建立了热弹塑性有限元方程。
And then , the change of elastoplastic matrix , parameters of material mechanics performance with temperature were considered , from thermal elastoplastic constitutive relation and applying the theory of thermal elastoplastic increment , the theoretical finite element equation was established .
-
Dirac矩阵和Pauli矩阵在塑性力学中的应用
The Application of Dirac Matrices and Pauli Matrices for the Theory of Plasticity