无偏估计
- 网络unbiased estimation;Unbiased estimator;Unbiased estimate;BLUE
-
WVD瞬时频率无偏估计研究
Unbiased Estimation of Instantaneous Frequency Using the Discrete WVD
-
该算法通过在每一步估计中消除相位模糊,解决估计精度和估计范围之间的矛盾,并利用最佳线性无偏估计(BLUE)方法进一步提高估计精度。
This algorithm avoids the conflict between estimation accuracy and estimation range by removing the phase ambiguity in every stage , and utilizes the best linear unbiased estimation ( BLUE ) to further improve the estimation accuracy .
-
基于SURE无偏估计的自适应小波阈值去噪
Adaptive Wavelet Thresholding Denoising method Based on SURE Estimation
-
刀切不完全U统计量最佳线性无偏估计中的W&K统计量
Jackknifing Incomplete U-statistics W-K Statistics of Best Linear Unbiased Estimate
-
对于方差分量的线性函数c′σ2的最小范数二次无偏估计,需要求解非线性方程组,一般没有显式解,只能获得迭代解。
Regarding the variance component linear function minimum norm quadratic unbiased estimates , it is needed to solve the nonlinear simultaneous equation .
-
v,b的自协方差估计b均为渐近无偏估计;
For example , moment estimation (?) , of c_v and autocovariance estimation (?) of b are asymptotically unbiased estimators ;
-
错误先验假定下Bayes线性无偏估计的稳健性
The Robustness of Bayes Linear Unbiased Estimations under Misspecified Prior Assumption
-
方差分量的Bayes二次无偏估计及可容许估计的非负性
Bayes Quadratic Unbiased Estimates of Variance Components and Nonnegativity of Admissible Estimates
-
Weibull分布场合恒定应力加速寿命试验的最优线性无偏估计
Best Linear Unbiased Estimator of Accelerated Life Test Under Weibull Distribution
-
线性模型中期望和方差分量的联立BAYES最优二次无偏估计
Simultaneous Bayes Quadratic Unbiased Estimators for Expectation and Variance Components in Linear Models
-
基于一个无偏估计函数和一个历史经验估计的经验Euclidean惩罚似然方法;
Empirical Euclidean penalized likelihood based on an unbiased estimating function and an empirical estimator ;
-
给出了无偏估计的一类解调序列,提供了一种截获同步CDMA通信系统通信信息的方法。
A class of demodulation sequences of unbias estimation is given . The method is to intercept the information of synchronous CDMA communications .
-
研究了基于SURE无偏估计的自适应小波软阈值去噪算法,提出一种新的阈值函数族,是一种可微阈值函数的统一表达式。
The adaptive wavelet threshold denoising method based on SURE estimation is investigated and a novel set of threshold functions , which is a uniform expression of differentiable threshold functions , is presented .
-
然后基于SURE无偏估计、自适应LMS算法和新的阈值函数,又推导出一种自适应小波阈值去噪法&自适应小波阈值相减法。
Then based on SURE unbias estimation , LMS algorithm and the new threshold function , this paper proposes a speech enhancement method called adaptive wavelet coefficients subtraction .
-
本文给出了VARIOGRAM的一个无偏估计类。
A class of unbiased estimator of variogram is obtained in this paper .
-
线性GMDH参数模型的无偏估计研究
The Linear Unbiasedness Property of Linear GMDH Parametric Model
-
在交叉步进应力加速寿命试验中,假定在各组应力下产品的寿命分布为指数分布,对于定数截尾样本,求加速方程中系数的线性无偏估计(BLUE)。
In the alternate stepwise stress accelerated life test , Under type ⅱ censoring of data from Exponential distribution , we give the linear unbiased estimates ( BLUE ) of the coefficients in acceleration equation .
-
本文研究三种两样本经验Euclidean似然方法:基于两个无偏估计函数的经验Euclidean似然方法;
This paper studies the three methods of empirical Euclidean likelihood for two sample : empirical Euclidean likelihood based on two unbiased estimating functions ;
-
VARIOGRAM无偏估计类探讨
Unbiased Estimator Class of Variogram
-
本文给出的理论分析和计算结果不仅具有理论意义,而且对实际应用中如何选用各种定位算法也有实际意义。(3)提出了一种基于椭圆公式的最佳线性无偏估计(BLUE)定位算法。
These conclusions have not only the theoretic benefits but also the practical ones for the selection of positioning approaches . ( 3 ) Present an ellipse based best linear unbiased estimator ( BLUE ) localization algorithm .
-
MUSIC算法是谱估计算法中的经典算法,它具有测向分辨率高,对信号个数和DOA角度可以进行渐进无偏估计等优点,但是在分辨相关信号时需要进行平滑处理,增加了计算量。
MUSIC algorithm is the classical algorithm to Spectral analysis , and it has many virtues expect that Spatial Smoothing , which the algorithm needs to distinguish correlated signals , result in excess work .
-
讨论寿命服从单参数GAMMA分布单元平均寿命的极大似然估计和一致最小方差无偏估计;
The maximum likelihood estimate and uniformly minimal variance unbiased estimate ( UMVUE ) of MTTF were made on the one-unit system whose lifetime was assumed to be on GAMMA distribution .
-
介绍了高斯牛顿法,并把它用于作物水分生产函数Jensen模型参数求解,该方法可使拟合结果逼近无偏估计,从而提高拟合的精度。
This paper introduces Gauss-Newton method and uses it to calculate the parameters of Jensen model of crop water production function .
-
当前所广泛使用的传递函数估计方法是H1估计和H2估计,这两种估计方法均为有偏估计方法,而近期提出的几种无偏估计方法又存在着不易实现的问题。
Presently , because the existing several unbiased Frequency Response Function estimators are difficult to realize , the most popular and widely-spread used Frequency Response Function estimators are H_1 , and H_2 , although both of them are biased ones .
-
本文对四舍五入数据构造的经验分布函数调整成为以下形式:从而使Gn(x)是总体分布函数的逐点渐近无偏估计。
In this paper , we made the empirical distribution function of the rounded data into the following form : Then Gn ( x ) has the point wise asymptotically unbiased character .
-
比较彻底的解决了简单线性EV模型中回归参数的无偏估计的存在性问题,证明了在一些常见的约束下,无偏估计并不存在。
Problem about the existence of the unbiased estimator of regression parameters in the simple linear EV model is thoroughly solved . The non-existent of unbiased estimator under some common restrictions are proved .
-
随后为了达到降低模型错分率,提高模型预测精度的作用,又对Bagging集成在均等处理无偏估计模型中产生噪音的全过程进行详细分析。
Then in order to reduce misclassification rate , and improve the prediction accuracy . Analyze the whole process of removing noise by using Bagging ensemble to treat the unbiased estimate equally .
-
本文证明了ρ(组内相关系数)是ρ的渐近无偏估计,讨论了Fisher近似公式的精确性,并提出了新的计算公式。
This paper proves that ρ ( intraclass relative coefficient ) is a asymptotically unbiased estimation of ρ, examines precision of Fisher 's approximate formulae and Puts forward the exact formulae for the sampling variance of ρ .
-
同时对LS估计的任一线性变换,给出了其均方误差的一个无偏估计,并应用极小化β~(K)的MSE的无偏估计的方法,得到了确定岭参数的公式。
In the meantime , the unbiased estimate of MSE of any linear tranformation of LS estimate β is given , and the formula of determing Ridge parameter is derived by the method of minimized unbiased estimate of MSE .
-
基于Logistic分布的若干个样本分位数,利用线性回归模型建立Logistic分布位置参数及尺度参数的渐近正态且渐近无偏估计量,得到分布参数的渐近置信估计。
The asymptotic normal and asymptotic unbiased estimation of location parameter and scale parameter is proposed by linear regression model , based on k p i-th quantiles of Logistic distribution simple sample . Then the asymptotic confidence estimation of the parameter is given for Logistic distribution .