扰动重力

扰动重力扰动重力
  1. 讨论了应用GPS测量重力点的大地高,从而获得地面点的扰动重力(或称纯重力异常)值这样新的重力边值条件,如何从理论与实际上确定重力场的问题。

    This paper discusses the problem of gravity field determination by application of such a new gravity boundary condition as the disturbing gravity by use of GPS .

  2. 详细描述了捷联惯性导航系统(SINS)中加速度计和陀螺数据仿真的方法,并给出了求解扰动重力的算法。

    The simulative methods about the data of accelerator and gyro embedded in SINS are described in detail , and the algorithm about the disturbing gravity is presented .

  3. 目前在重力场计算中引入的各种快速算法(如FFT)出同时适用于扰动重力为输入量的Hotine积分。

    Now all kinds of methods ( such as FFT ) to calculate the gravity field are applicable to the Hotine formula of inputting the disturbing gravity .

  4. 出扰动重力作为输入数据的Hotine积分与由重力异常作为输入数据的Stokes积分比较,前者的核函数更为简单,因此更便于计算。在平面近似时两者完全相同。

    Comparing the Hotine formula using disturbing gravity with the Stokes formula using gravity anomaly , the former is simpler to compute , which is same as the back in the two approximate planes .

  5. 扰动重力较重力异常更易于重力场计算。

    The disturbing gravity is calculated easier than the gravity anomaly .

  6. 扰动重力数据精度对GPS/重力边值问题的影响研究

    Effect of Gravity Disturbance Precision on GPS / Gravity Boundary Value Problem

  7. 扰动重力边值问题与实际数据处理的研究

    Problem of the Boundary Value of Disturbing Gravity and Practical Data Processing

  8. 外部扰动重力场的频谱响应质点模型

    Frequency response point masses model of exterior disturbing gravity field

  9. 地面扰动重力垂直梯度的确定

    Determination of disturbing gravity vertical gradient in Earth 's surface

  10. 扰动重力场精密确定与逼近效果分析

    Precise Determination and Approximation Analysis of Disturbing Gravity Field

  11. 本文对调和性扰动重力场源的有关理论问题进行了推演、论证和分析。

    The problems on harmonic density resources of disturbing gravity field are discussed and researched .

  12. 在推求地球外部扰动重力场中数据的采用

    Applications of data in the determination of the external disturbing gravity field outside the earth

  13. 外空扰动重力计算中的截断误差

    Truncation Error of Spatial Disturbing Gravity Computation

  14. 由惯导系统的误差方程分析了扰动重力场的影响。

    According to the error equation of INS , the influence of gravity disturbance is analyzed .

  15. 此外,扰动重力垂直梯度如何在大地测量和地球物理中进一步得到应用,以及为何用扰动重力垂直梯度代替重力异常垂直梯度也给予了简明的论述。

    In addition , how to apply gravity gradient to geodesy and geophysics have been concisely demonstrated .

  16. 本文研究了航空重力观测数据的处理方法,重点探讨了空中扰动重力的滤波处理算法,并用实测数据进行了试验验证。

    This thesis mainly studies the data processing algorithms of aerial gravity and emphasizes on the filtering method of aerial disturbing gravity .

  17. 在全面论述了扰动重力和重力垂线偏差对惯性导航的影响的基础上,结合实际情况提出了进行重力场误差补偿的两种方法。

    After roundly discussing the influence of disturbing gravity and gravity vertical deflection on INS and considering the real situation , two gravity error compensation methods are put forward .

  18. 以GPS/重力边值问题为基本数学模型,利用不同分辨率扰动重力数据分别模拟了对GPS/重力边值问题的影响。

    Based on the theory of GPS / gravity boundary value problem , the errors caused by gravity disturbances of different resolution are simulated and analyzed using numerical simulation methods .

  19. 根据外空扰动重力与地面数据分辨率及其覆盖范围之间的关系,将重力异常分成不同频段、不同分辨率,分别计算了截断误差。

    From the relation of spatial disturbing gravity and ground gravity data resolution as well as its scope , truncation errors are computed by dividing the gravity anomaly into frequency and resolution .

  20. 从惯性导航力学编排方程出发,将高阶重力场模型代替正常重力模型,分析了扰动重力引起的惯性导航误差;

    High order gravity field model is used to substitute the normal gravity model in the INS arrange equations , and the influence of the gravity disturbance on the INS is studied .

  21. 详细分析了载体的加速度矢量,科里奥利加速度,正常重力,姿态误差,偏心改正和时间同步误差对扰动重力矢量的影响。

    Then the effects caused by main errors including precise acceleration , Coriolis acceleration , normal gravity , attitude , lever arm corrections , and time synchronization on gravity disturbance vector were investigated and analyzed .

  22. 给出了由地面重力数据计算外空扰动重力矢量的公式,并根据WongandGore截断理论给出了外区重力异常对计算点影响的公式。

    This paper gives formulae of computing spatial disturbing gravity using ground data , and presents the formulae of the effect of outer gravity anomaly on the point to be computed based on the theory of Wong and Gore .

  23. 给出了基于扰动重力的引力位系数模型,得出了扰动重力的阶方差模型。在局部重力场方面,给出应用扰动重力与地形数据计算垂线偏差和高程异常的计算方法。

    This paper gives the gravitational potential coefficient model and the factorial square model and shows the method of computing the vertical deflection and the height anomaly by using the disturbing gravity and the terrain data in regional gravity field .

  24. 用卡尔曼滤波器减弱陀螺漂移误差对扰动重力的累积影响,介绍了目前常用的两种方法:基于位置更新的滤波和基于加速度更新的滤波。

    The cumulative errors caused by gyro drift are weakened by the Kalman filter , and two main methods are introduced , viz . Kalman filter based on the updates of positions and Kalman filter based on the updates of accelerations .

  25. 在数据处理计算的过程中,编写了坐标系统转换、重力异常与扰动重力转换、扰动重力格网化、扰动重力计算高程异常与垂线偏差软件。

    In course of dealing with data , the author make the software which has many functions such as transforming the coordinate system , transforming the disturbing gravity and the gravity anomaly , gridding the disturbing gravity and computing the vertical deflection and the gravity anomaly .

  26. 他们的数值实现为利用位模型计算高分辨率扰动重力场元格网平均值、重力场球谐综合分析等奠定了基础。

    The numerical realization of the kind of fixed integral is the numerical basis of high-resolution gridding mean value computation of different functionals of the disturbing gravity field using the Earth 's gravity field model and spherical harmonic analysis and synthesis methods of the gravity field .

  27. 真实重力与模型重力之间存在偏差,此偏差就是重力扰动,重力补偿就是指对重力扰动的补偿。

    Gravity disturbances are the errors between true gravity and the gravity calculated by gravity model , and gravity compensation is the compensation for gravity disturbances .

  28. 与单变量波状扰动激发重力波波包的过程相比,能量传播路径几乎完全一致,扰动转化为波动的特征时间也基本相同,但能量转换效率更高。

    Compared with the results of energy conversion for gravity waves excited by single-variable disturbances , the characteristic times of the energy conversion for gravity waves in the cases present in this paper are the same , but the efficiencies of energy conversion are larger .

  29. 根据扰动位与重力场元的微分关系,导出了由水平重力梯度计算重力异常、垂线偏差的公式。

    The formulas for computing the gravity anomaly and the deflection of the vertical from horizontal gravity gradient are deduced according to differential relationship between disturbing potential and gravity quantities .

  30. 建立起在边界条件分别为扰动位、扰动重力、重力异常以及其中两类以上同时作为边界输入的情况下,对应的调和性扰动场源的球谐函数表达式及封闭解式。

    Under the boundary values such as disturbing potential , gravity anomaly , gravity disturbance and two or three of them together , the spherical harmonic series representations and cloed solutions on harmonic density anomaly are given .