扩散火焰

  • 网络diffusion flame
扩散火焰扩散火焰
  1. USEDCARS测量对撞式扩散火焰的温度分布

    Measurements of temperature distribution in a counterflow diffusion flame by USED CARS

  2. 甲烷-湿空气对冲扩散火焰中CO的生成特性

    The characteristics of CO emission in METHANE-HUMID air counterflow diffusion flame

  3. 甲烷/富氧射流扩散火焰NOx的排放特性

    NO_x Emission Characteristics of Methane / Oxygen-enriched Air Jet Diffusion Flames

  4. CO2稀释对合成气扩散火焰中氮氧化物生成排放特性的影响

    Effects of CO_2 Dilution on NO_x Formation Characteristics in Syngas Diffusion Flames

  5. 甲烷/富氧扩散火焰的燃烧特性和NOx排放的研究

    Study on Combustion Characteristics and NO_x Emission of Methane / Oxygen-Enriched Diffusion Flame

  6. 发射CT法测量层流乙烯扩散火焰中温度与烟黑浓度分布的实验研究

    Simultaneous measurement of distributions of temperature and soot volume fraction in laminar ethylene flames by emission CT

  7. 扩散火焰中Cr2O3气溶胶尺寸研究

    Study on Cr_2O_3 Aerosol Size in a Diffusion Flame

  8. 钝体驻定湍流扩散火焰局部熄火的PDF模拟

    PDF Simulation of Local Extinction Within a Bluff-Body Stabilized Turbulent Non-Premixed Flame

  9. 受限湍流射流扩散火焰的PDF模拟

    PDF Simulation of a Confined Turbulent Jet Diffusion Flame

  10. 氢气扩散火焰中辐射源项湍流脉动特征的PDF模拟

    PDF Simulation of Fluctuating Behavior of Radiative Source Term in Hydrogent Turbulent Jet Diffusion Flame

  11. 扩散火焰法控制TiO2纳米晶粒径和晶型的研究

    Control of Size and Crystal Form of TiO_2 Nanocrystalline Synthesized by Co-flow Diffusion Flames

  12. 对一种轴向对称分层扩散火焰中的CH、CH、及OH所做的实验和计算研究

    " Experimental and Computational Study of CH , CH , and OH in an Axisymmetric Laminar Diffusion Flame "

  13. 对LPG,研究了氧化剂组分对其部分预混合火焰和扩散火焰的影响,并对LPG扩散火焰进行了数值模拟研究。

    For LPG , the effects of oxidizer composition on LPG partial premixing and diffusion flame were observed .

  14. 对于扩散火焰,高温区在OH带内侧;而对于预混火焰,二者基本一致。

    The high temperature zone is at inner side of OH zone for the diffusion flame , but both zones are approximately at the same position for the premixed flame .

  15. 对甲烷/富氧同轴射流扩散火焰燃烧条件下氧化剂流速对NOx排放的影响进行了实验研究。

    The influence of oxidizer velocity on NOx emission characteristics of methane / oxygen-enriched air coflow jet diffusion flames was investigated experimentally .

  16. 用扩散火焰燃烧合成Fe~(3+)掺杂TiO2纳米晶的结构及紫外光催化性能

    Structure and UV Photocatalytic Activity of Fe ~ ( 3 + ) - Doped TiO_2 Nanocrystals Synthesized by Diffusion Combustion Flames

  17. 针对在空气加湿影响CO排放方面存在的疑问,本文运用对冲扩散火焰从化学机理方面对其进行了计算分析。

    Due to there exists some doubts on the influence of humid air on CO emission , the process was calculated and analyzed considering the chemical mechanism by using an opposed diffusion flame .

  18. 在此基础上利用CCD成像技术进一步研究了燃料稀释浓度、氧化剂浓度的变化对富氧空气/甲烷对向流扩散火焰形态的影响规律。

    On the basis of this , the effects of flame shape that shoot by digital camera were studied when methane was diluted by dilution and the concentration of oxidant varied .

  19. 针对一种可降低天然气高温燃烧过程中NOx生成量的脉动供燃料燃烧技术,研究了一个采用燃气流量脉动燃烧方式的射流扩散火焰。

    Oscillating Combustion and Flame Modes in Different Oscillating Frequencies Oscillating combustion is a new technology for NO_x removal in high temperature industrial processes burning natural gas .

  20. 本文使用详细的化学反应机理模拟了C2H6/O2/N2/AR层流对冲扩散火焰中多环芳烃的生成动力学过程。

    This paper simulated polycyclic aromatic hydrocarbons formation in C2H6 / O2 / N2 / AR laminar opposed flow diffusion flame using detailed chemical kinetic mechanism .

  21. XiaoX.等关于甲烷――空气扩散火焰的研究表明,该误差可达34%;本文的数值和实验研究发现,对乙烯――空气扩散火焰,该误差可达48.8%。

    The study of methane-air diffusion flame by Xiao X. et al shows that this error reaches 34 % . This investigation indicates this error arrives at 48.8 % for ethylene-air diffusion flame .

  22. 为了解火焰法合成纳米颗粒过程中流体力学和颗粒动力学作用过程,利用CFD商业软件FLUENT模拟了在湍流扩散火焰中合成TiO2纳米颗粒的过程。

    To probe into the effects of the interaction of fluid mechanics and particle dynamics in the process of flame synthesis , the simulation of titania nanoparticle synthesis in the turbulent diffusion flame was performed by using the commercial CFD-code FLUENT .

  23. 文中以对向流扩散火焰为对象,利用详细的基元反应动力学模型研究了燃料稀释对富氧空气/甲烷扩散火焰中氮氧化物生成的影响,稀释剂为N2或CO2。

    With a counter-flow diffusion flame serving as an object of research the impact of fuel dilution on the NO_x formation in an oxygen-rich air / methane diffusion flame was studied with the help of a fully developed elementary reaction-dynamics model .

  24. 采用κ-ε湍流模型、标量联合的概率密度函数(PDF)输运方程和层流火焰面模型相结合,模拟氢气自由扩散火焰中辐射源项湍流脉动特征。

    The laminar flamelet model in combination with joint probability density function ( PDF ) transport equation of mixture fraction and turbulence frequency is used to simulate fluctuating behavior of radiative source term in turbulent jet diffusion flames of hydrogen .

  25. 随后在模型燃烧室中对合成气&湿空气扩散火焰的CO排放机理进行了研究,发现CO排放并非随含空气湿量单调增加,而是先减后增。

    Subsequently , the mechanism of CO emission of synthesis gas-humid air diffusion flames was studied by using a model combustor . It was found that the CO emission did not increase monotonically with air humidity . However , the CO emission would at first decrease and then increase .

  26. 采用速率敏感度分析法分别对燃料为COH2和CH3OH的钝体绕流湍流扩散火焰的燃烧机理进行了简化。

    Chemical reaction mechanisms of turbulent non premixed carbon monoxide / hydrogen and methanol bluff body flame were simplified by rate sensitivity analysis method .

  27. 采用详细的甲烷氧化化学反应动力学机理(GRIMech3.0)对不同拉伸率条件下的拉伸层流扩散火焰面结构进行了数值计算,建立了一个包含一系列拉伸层流火焰面结构的火焰面数据库。

    The stretched laminar diffusion flamelet structures under different strain rates were numerically calculated based on a set of detailed chemical reaction mechanism GRI-Mech 3.0 for methane oxidation . From the calculation , flamelet library consisting of a series of stretched laminar flamelet structures is generated .

  28. 用数字粒子图像测速技术(DPIV)测量了扩散火焰周围气流在梯度磁场作用下的速度分布,并与无磁场作用下的速度分布比较。

    The digital particle image velocimetry ( DPIV ) technique is used to measure the velocity distribution of gas flows around diffusion flames under the gradient magnetic field . The velocity distribution in the presence of the magnetic field is compared with that in the absence of the field .

  29. 两种亚网格湍流模型的旋流扩散火焰大涡模拟

    Large-eddy simulation of swirling diffusion flame using two SGS turbulence models

  30. 富氧空气/甲烷对向流扩散火焰的实验研究

    An Experimental research on Oxygen-Enriched Air / Methane Counterflow Diffusion Flame