哈密顿算符

  • 网络hamiltonian operator
哈密顿算符哈密顿算符
  1. 而且带帽的H,好,这个帽告诉我们它肯定是一个算符,这个被称为哈密顿算符。

    And h with the carrot or the hat here , well , that carrot or hat tell us it must be an operator , and this is called the Hamiltonian operator .

  2. 本文从真空中麦克斯韦方程组出发,通过把矢势的Fourier展开式中的振幅按照量子化对应化为算符,得到了哈密顿算符,从而实现了电磁场的量子化,同时给出了电磁场的数态描述。

    From Maxwell equations for free space and by converting the amplitudes in Fourier expansion of the vector potential into operators according to quantisation correspondence , this paper obtains Hamiltonian operator , which quantises the electromagnetic field , and introduces the number state representation for the field .

  3. 任意哈密顿算符传播函数WKB近似的普遍形式

    The General Expansion of WKB Approximation method to the Propagator for Arbitrary Hamiltonians

  4. 设H为量子体系的哈密顿算符,以算符(λ-H)和(H-λ)~(-1)作用于近似波函数k~(0)。

    An approximate wave function is operated on by the operators λ - H and ( H - λ) - 1 , where H is the Hamiltonian operator of the quantum system under consideration .

  5. 发现有效哈密顿算符与原哈密顿算符在形式上由一静态规范变换相关联。这两个哈密顿算符的量子态差Berry相位。

    We found that the effective Hamiltonian and original one are formally related with a static gauge transformation , the quantum states of the two Hamiltonians differ by a Berry phase .

  6. 用这种方法构造了一个在半径随时间变化的球形盒子内的量子粒子的有效哈密顿算符,并用它来计算波函数的Berry相位。

    In this paper the effective Hamiltonian , constructed in the above way , of quantum particle in a spherical box of varying radius is used to calculate the Berry phase of the wave function .

  7. 产生双模压缩态的哈密顿算符的一般形式

    The General Hamiltonian of Generation of Two - mode Squeezed State

  8. 在整个讨论过程中,无需假定哈密顿算符已是正规乘积形式。

    Throughout the discussion the Hamiltonians are not demanded to be of normal-product form in advance .

  9. 围绕一维谐振子讨论了如何将哈密顿算符对角化、引进的是玻色算符还是费米算符的问题,并分析了能量量子化的原因及能量子与声子的区别。

    The origin of energy quantum and the difference between energy quantum and phonons are also analyzed .

  10. 在旋转波近似下,得到在入射光驱动下光子-声子耦合体系的总的相干性哈密顿算符。

    Under rotating wave approximation , the total coherent Hamiltonian of photon-phonon coupling system driven by incident field is introduced .

  11. 这是谐振子哈密顿算符最有用的形式,在下文中还会碰到这个表达式。

    This is a most useful form of the harmonic oscillator Hamiltonian and it will be encountered in several subsequent developments .

  12. 基于第一性原理计算的结果,我们可以构造所研究体系的有效哈密顿量算符以及跃迁偶极矩算符,从而计算稀土离子晶体场参数和跃迁强度参数。

    On the basis of the first-principles calculated results , we can construct the effective Hamiltonian and dipole moment operator , and then extract the crystal-field parameters and the intensity parameters .

  13. 本文讨论了哈密顿原理的数学基础,指出该原理中算符δ的两种意义:(1)在某些情况下,哈密顿原理中的算符δ代表一端固定、另一端变动的变分。

    In this paper , the mathematical basis of Hamilton 's principle is discussed and two significations of the operator δ in this principle are indicated . In some cases , the operator δ represents a variation with a fixed end point and a variable one .