右导数

yòu dǎo shù
  • Right derivative;derivative on the right;right-hand derivative;progressive derivative;regressive derivative
右导数右导数
右导数[yòu dǎo shù]
  1. 应用函数右导数的概念,削弱了两个相应定理的条件,得出了定理1、定理2两个结论。

    In this paper , by applying the conception of derivative on the right , the conditions of relevant theorem are weakened and theorem1and2are obtained .

  2. 函数右导数的应用

    The Applications of Derivative on the Right of Convex Function

  3. 若将Roll定理可导的条件改为左导数(或右导数)存在且连续,则此三个定理也成立。

    Given that the theorem of Roll reckoning condition be changed into the existence & continuation of left or right , then the above 3 theorems remain true .

  4. N-函数和其右导数性质间的一些关系

    Some Relations between Property of N-function and Her Right Derivative

  5. 这个极限有时称为右导数。

    This limit is sometimes called the right-hand derivative .

  6. 关于右导数与凸函数的关系

    The connection of right derivative and right function

  7. 关于一类函数的右导数

    On the Right-hand Derivative of Some Functions

  8. 研究了函数的二阶右导数与函数凸性的关系,给出了一个定理。

    This paper researched the relation between quadratic factorial right derivative and protrusion feature of function .

  9. 研究了函数的一阶及二阶右导数与函数凸性的关系,推广了数学分析中的有关结果。

    This paper discusses the connection of one step or two step right derivative and protruding property of a function .

  10. 我们采用了分式的若干变换技巧以完成解的优先估计及V函数沿解的右上导数的计算。

    In order to make the prior estimate of solution and calculate the upper right derivative of V ( t ) along the solution , we employ some transformation techniques on fraction .

  11. 证明了凸函数的左(或右)导数积分的两个计算公式,并给出应用。

    Two calculating formulas of left or right derivative integration of convex function are proved and applied as well .

  12. 导数极限定理可以引出左(右)导数极限定理、区间端点导数极限定理.用导数极限法求分段点的导数

    The derivative limit theorem may draw out the left ( right ) derivative limit theorem and about the region end point . To Seek Piecewise Derivative Using Function Interval Function Limit

  13. 由一错例引出了讨论导函数在分段点处的左、右极限与对应函数的左、右导数相等的分段函数在分段点处导数的一种求法。

    A false example is given to educe the discussion of a solution to the derivative of subsection function at the point of subsection .

  14. 并讨论说明了导函数的右(左)极限与右(左)导数之间的关系。

    And demonstrates the relations between the right ( left ) limit of function and right ( left ) derivative .