动态回归模型
- 网络Dynamic Regression Model
-
建立动态回归模型,采用移动窗口的方法对土石坝观测数据进行分析,利用动态参数来处理大坝的时效作用。
Build dynamic regression model , use the method of moving stations to analyze the observed data and deal with the dam 's time effect with dynamic parameters .
-
综合运用面板数据动态回归模型、系统动力学模型构建我国区域数字鸿沟动态模型。
The second is an integrated use of panel data dynamic regression model and the system dynamics to establish and dynamic regional digital divide formation model . 3 .
-
山东省农村人均消费性支出的动态回归模型
Dynamic-regression model of per capital annual expenditure on consumption in Shandong countryside
-
从结果我们可以得出,对动态回归模型的每个强影响点的研究都是不可忽视的。
From the result we can learn that any studies on every strong influential point in the model of regression sliding ought not to be neglected .
-
文章利用静态指标体系计算了我国教育投资对经济增长的贡献率与贡献度;通过建立动态回归模型进一步证明了教育投资对经济增长的贡献水平。
By way of using the static quota system and building the dynamic regression models , this paper calculates the contribution rate and the contribution degree of our country 's education investment to economic growth .
-
动态线性回归模型及应用
Dynamic Linear Regression Model and Application
-
用动态自回归模型预报大华北地区强震的发震时间
Prediction of Occurring Time of Strong Earthquakes in the Great North China by Dynamic AR Model
-
程序运行中与实测数据紧密结合动态更新回归模型,预测的沉降结果与实测数据比吻合。
Compared with the data from field observations , the prediction of ground settlement using this module is satisfied .
-
结果表明,动态自回归模型时变参数(时变系数)的变化是有规律的,其增量大体上是一些简单周期函数的叠加。
The results showed that the change of time-varying parameters ( coefficient ) in dynamic AR model has a regularity . Its increments are piled up by some simple period functions .
-
提出一种基于Elman动态回归神经网络模型的鲁棒型广义预测控制(GPC)。
A robust generalized predictive control ( GPC ) based on Elman neural network model is presented in this paper .
-
本文建立了土石坝动态的统计回归模型。
Dynamic statistical model of earth-rockfill dam is proposed in this paper .
-
动态参数线性回归模型
Dynamic Parameter Linear Regression Model
-
结合贝叶斯网络和神经网络,提出了一种建立数据驱动型的动态线性回归系统模型的方法。
A new method was represented to model dynamic linear regression system driven by data , in which a bayesian network was combined with the RBF neural network .