莱氏体

  • 网络ledeburite
莱氏体莱氏体
  1. 若铸态组织中存在少量莱氏体,应770℃保温1h,以消除渗碳体,再进行740℃保温3h的石墨化退火处理。

    As a little ledeburite in the cast structure existed , it was heated to eliminate the cementite 1 hour at 770 ℃, following the graphitizing annealing 3 hours at 740 ℃ .

  2. 凸轮激冷层为莱氏体,硬度为50~58HRC,激冷层深度为5~10mm。

    The chilled layer of the cam consists ledeburite with hardness 50 ~ 58 HRC , and the chilled layer depth is 5 ~ 10 mm .

  3. 使M42钢中莱氏体网变得更薄,碳化物排列更加疏松。

    It also made the ledeburite reticular more thin and loose .

  4. 合金化程度低的合金化层微观组织具有亚共晶特征,莱氏体中的碳化物为Fe3C,部分γFe转变为马氏体。

    The microstructure of the layer with low alloying degree has the hypoeutectic character , of which the carbide in ledeburite is Fe 3C and part of γ - Fe transforms into α - Fe ( martensite ) .

  5. 稀土对莱氏体钢共晶碳化物粒化的影响

    Effect of RE on Granulation of Eutectic Carbide in Ledeburite Steel

  6. 无莱氏体高速钢高温扩散退火的研究

    Research on high Temperature Diffusion Annealing of Non-Ld high Speed Steel

  7. 高速钢又称锋钢,是一种高碳高合金莱氏体钢。

    High-speed steel ( HSS ) is high carbon alloy ledeburite steel .

  8. 具有粒状碳化物的新型莱氏体铸造模具钢的组织与性能

    Microstructure and Properties of a New Type of Ledeburite Cast Die Steel with Granular Carbide

  9. 无莱氏体钢过饱和渗碳的研究

    The Study of Over-carburizing on Non-Ledeburite Steel

  10. 为莱氏体钢铁材料塑性变形的研究提供了科学的证据。

    It provides a scientific evidence for study on the plastic deformation of ledeburite steel and iron materials .

  11. 渗层中的碳化物细小、均匀、弥散,没有粗大的共晶莱氏体组织;

    The carbides of the alloyed layer were compact , uniform and dispersed without coarse eutectic Ledeburite structure .

  12. 球墨周围的铁素体和珠光体是贫铈的,而远离球墨的珠光体和莱氏体是富铈的。

    Ce is depleted from ferrite and pearlite surrounded by nodular graphite , and enriched in pearlite and ledeburite far apart from nodular graphite .

  13. 高温停留时间对细晶粒钛合金粗晶区组织的影响合金层中的碳化物细小、均匀、弥散,无粗大的共晶莱氏体组织。

    Influence of elevated temperature holding time on microstructure and properties in heat affected zone of fine grained titanium alloy Large eutectic ledeburite is not found .

  14. 热疲劳裂纹主要在钢基体与共晶莱氏体界面处、钢基体内扩展及穿越共晶碳化物。

    The cracks mainly propagate at interfaces between the steel matrix and the eutectic ledeburite , and in the steel matrix and through the eutectic carbide .

  15. 表面层极硬、耐磨而弥散的莱氏体是由马氏体+残留奥氏体+碳化物相组成。

    Through the processing , it becomes a kind of extremely hard , wear-resistant and dispersed ledeburite structure which consists of martensite , retained austenite and carbide phases .

  16. 本试验用离子渗碳的方法对其进行了改性,处理后获得了无共晶莱氏体组织的均匀细小的碳化物,从而改善了组织,提高了性能。

    After treatment , uniform and fine carbonization of no ledeburite organization were obtained . Therefore , we refined the organization of stainless steel and improved its property .

  17. 由于钢的合金含量高,化学成分复杂,铸锭尺寸大,冷却速度缓慢等缘故,在其凝固时不可避免地会产生粗大的莱氏体碳化物偏析组织。

    Due to the high alloy content , high dimension of ingot and low cooling rate , the coarse ledeburite eutectic segregation will be formed within the ingot inevitably .

  18. 指出莱氏体钢铁材料组织中的共晶网状碳化物可以产生塑性变形,而且仍以位错的运动、交割,进而形成亚结构为其变形机制。

    The net like carbide in ledeburite structure can bring about the plastic deformation . The deforming mechanism is the movement and inter-action of dislocation and the formation of sub-structure .

  19. 合金化区因为温度梯度的原因由胞状晶、树枝胞状晶和树枝晶组成,跟据基材的不同三者的含量各不一样,主要包含残余奥氏体、莱氏体和马氏体。

    The alloyed zone is consisted of cellular crystal , dentrite-cellular crystal and dentrite crystal because of different temperature gradient . The contents of the three kinds of crystals vary in different substrates .

  20. 由于金属对Nd:YAG激光高的吸收率,其合金化过程中熔池温度高,冷却速度大,晶粒细小且莱氏体产生较少。

    Due to the large metal absorptivity of Nd : YAG laser , a high temperature was reached in the molten pool during LSA process . Finer grain and fewer ledeburite was obtained for the high cooling speed .

  21. 实验中通过测量铸锭的二次晶轴间距、莱氏体网络尺寸及计算局部凝固时间考察了熔化速度、熔池深度对电渣重熔高速钢凝固质量的影响。

    Influences of melting rate and depth of metal pool on the solidification of electro-slag remelting high speed steels have been investigated by measuring the secondary dendrite arm spacing and the ledeburite meshes and also by calculating the values of local solidification time .