奥氏体组织
- 网络austenite structure
-
合金经1200℃水冷固溶处理后,可得到单相奥氏体组织。
After water - cooling and solid solution at 1200 ℃, single-phase austenite structure can be obtained .
-
开发了用于模拟高碳钢高速线材生产过程中断面温度分布,奥氏体组织演变和产品性能的系统数学模型组。
A systematic mathematical model group has been developed to simulate the billet section temperature distribution , austenite structure evolution and products properties .
-
试验结果表明,该钢经1050℃保温2h固溶处理后,可得到单相的奥氏体组织,具有良好的抗点蚀性能。
The experimental results show that a singlephase austenitic structure and a excellent pitting corrosion resistance are obtained after solution heat treatment at 1050 ℃ for 2h .
-
试验结果表明,该钢电子束焊接接头焊缝为典型的粗大针状马氏体加残余奥氏体组织,HAZ(热影响区)为中温组织;
The tests results show that the microstructure of the welding line under the as welded condition is typical coarse spiculate martensite and retained austenite ;
-
奥氏体组织的稳定性得到提高。疲劳实验过程中SUS304发生了显著的应变诱发马氏体转变,而SUS304N基本未发生此现象。
Remarkable austenite-martensite transformation occurs in SUS304 during fatigue test , on the other hand , almost no austenite-martensite transformation occurs in SUS304N .
-
研究结果表明,该钢经1150℃固溶处理可得到单相奥氏体组织,在20~80%H2SO4,温度为80℃的硫酸介质中具有优良的耐蚀性和良好的综合机械性能与铸造性能。
The results show that it has a single-phase austenite microstructure after solution treatment at 1150 ℃, so to provide a good corrosion resistance in 20 % ~ 80 % H_2SO_4 at 80 ℃ and has a good synthetic mechanical properties and casting behaviors .
-
合金含量对热变形奥氏体组织演变的影响
Influence of Alloying Content on Microstructure Evolution of Hot Deformed Austenite
-
细化母相奥氏体组织的研究
Study on the Grain Refinement of Austenite PHASE AND ITS SIGNIFICANCE
-
材料金相检验微观组织正常,为典型的奥氏体组织结构。
Metallographic microstructure examination are normal and typical austenitic structure .
-
母材区除了奥氏体组织外,存在铜元素的扩散。
Other than austenite , copper element dissolution is found in material .
-
合金组织均匀细小,为奥氏体组织。
Alloy presents a fine and uniform austenitic structure .
-
锰钢奥氏体组织与性能的价电子结构分析
Valence Electron Structure Analysis on Microstructure and Properties of Austenite in Manganese Steels
-
结果表明,再结晶后的显微组织为完全奥氏体组织。
The results show that the recrystallization microstructure of 316L stainless steel is complete austenite .
-
加热及变形温度对含铌高碳钢奥氏体组织的影响
Effect of Heating and Deformation Temperature on Austenite Structure of Nb Micro-alloyed High Carbon Steel
-
加热温度对微合金高强钢奥氏体组织及其再结晶的影响
Effect of Holding Temperature on Microstructure and Recrystallization of Austenite in Nb-V-Ti Microalloyed High Strength Steel
-
微区分析发现畸变的共晶奥氏体组织与球墨铸铁低韧性之间存在着直接的对应关系。
The analysis of micro zone discovers that there are directly relationships between the distortion structure of eutectic austenitic and lower ductility .
-
在450℃回火,出现贝氏体回火脆性,发生贝氏体铁素体和奥氏体组织的分解,冲击韧度最低。
Temper brittleness appears at 450 ℃ and bainite ferrite and residual austenite decomposed carbide , impact toughness reaches the lowest value .
-
结果表明:激光处理后表面迅速熔化和冷却,组织由珠光体+片状石墨组织转化为不同粗细的针状马氏体与残余奥氏体组织;
The results show that the structure of the surface change from pearlite + sheet graphite to speculate martensite of various thickness ;
-
结果表明,热轧后能够获得多边形铁素体、粒状贝氏体和大量稳定的残留奥氏体组织。
The results show that polygonal ferrite , granular bainite and larger amount of stabilized retained austenite can be obtained after hot rolling .
-
最后淬火至室温,得到马氏体与残余奥氏体组织,使其具有较高强度与韧性。
Finally , by quenching to room temperature , the organization of Martensite and retained austenite , will gain high strength and toughness .
-
在焊接耐磨层过程中过渡层奥氏体组织发生塑性变形,降低了焊接接头中的残余应力,提高了接头的结合性能。
When welding the anti-wear layer plastic deformation occurs in the austenite , reducing the residual stress in welded joints and improving the bonding properties .
-
热变形造成的奥氏体组织结构的变化将影响到热变形奥氏体在随后冷却过程中的相变。
Some changes of the microstructure of austenite caused by hot deformation will affect the phase transformation in austenite during cooling process after hot deformation .
-
通过分析认为,高应变诱发了奥氏体组织中马氏体转变,而氘、氚的存在进一步促进了奥氏体组织中的ε马氏体转变,从而降低了奥氏体不锈钢的层错能,导致其抗氢脆能力下降。
The deuterium and tritium improve the ε martensite transformation of austenite and reduce the fault energy , which reduce the hydrogen-resistant properties of 316L stainless steel .
-
研究结果表明:在不预热条件下,用KD286焊补钢轨,焊缝组织为柱状奥氏体组织,熔合区和过热区不可避免地产生脆硬的马氏体组织。
The results show that : under the no preheating condition , the microstructure of weld metal is columnar austenitic , and brittle martensite exists in the fusion zone and over-heated zone unavoidably .
-
实验结果表明:含硅量为0.7-1.7%的实验钢在280-320℃范围内等温适当的时间,获得贝氏体+奥氏体组织,具有优良的综合机械性能;
The sample steels , which include 0.7-1.7 % Si and austempered at 280-320 ℃ for apposite time has the best synthetic mechanical properties . The experimental result are given as follows : Laboratory ;
-
焊缝为全奥氏体组织,其析出相的数量、尺寸、形状和分布与其焊丝熔敷金属相似。
The weld metal exhibited a microstructure of austenite , and the quantity , size , shape , and the distribution of the secondary phases were similar to these of the phases in the deposited metal .
-
水韧处理时加热温度不够高,未能把碳化物溶解,而使其保留了下来,未得到均匀的奥氏体组织。
In other words , when the water toughening process is applied , the operation temperature is not high enough , which causes some carbine is kept rather than dissolved , and uniform Austenite is not obtained .
-
运用奥氏体组织演变的增量数学模型,采用叠加原理,对薄板坯热连轧过程金属微观组织演变进行了模拟;运用奥氏体相变模型,模拟了薄板坯热轧后钢板的层流冷却过程奥氏体的相变过程。
Using principle of superposition , an austenite evolutive incremental mathematical model is adopted in simulating microstructure variation during the continuous rolling , and an incremental model of phase transformation is used in simulating continuous cooling after hot forming .
-
结果表明,该钢种经1150℃固溶处理可得到单相奥氏体组织,并具有优良的均匀腐蚀、晶间腐蚀、点蚀和电化学腐蚀性能。
Experimental results show that some single phase of austenites in the steel can be gained by solid solution treatment at 1150 ℃, and the steel possesses good properties of even corrosion , intergranular corrosion , pitting corrosion and electrochemical corrosion .
-
高密度变形条带相互交叉、阻滞或截割,使奥氏体组织严重细化变为微晶甚至纳米晶,严重的点阵畸变使晶体的自由能升高,使之变成非晶态;
Intersecting , blocking , cutting each other of deformation bands with high density cause serious fragment of grain which become nano-sized grain and distortion of lattice raises the free energy of crystal beyond that of the amorphous phase , so that crystal becomes the amorphous phase eventually .