vector bundle
- 网络向量丛
-
A Computation of Some Hilbert Series and the Stability of a Vector Bundle under Frobenius Morphism
一类希尔伯特级数的计算以及Frobenius态射下向量丛的稳定性
-
Notes on a Study of Vector Bundle Dynamical Systems (ⅰ)
向量丛动力系统研究注记(Ⅰ)
-
On Existences of Special Metrics and Connections in Complex Vector Bundle
复向量丛上特殊度量和联络的存在性问题
-
The Symplectic Pontryagin Characteristic Forms of a Quaternion Vector Bundle and Its Integral Formulas
四元数矢丛的辛Pontryagin示性式和它的积分公式
-
Let M be a compact complex manifold , E a differentiable complex vector bundle over M , and g resp .
我们设M是一紧复流形,E为其上的可微分向量丛。
-
A complex two dimensional vector bundle is constructed , which structure group is SL ( 2 , c ) , base manifold is spacetime M and M is u space .
考虑时空M为u4空间,建立以M为底流形、SL(2,c)为结构群的二维复矢量丛,丛上联络作为规范势。
-
In the last chapter is the mainly research result in this thesis , which gives the proof about a Poincar é - Hopf type formula for a pair of sections of a real vector bundle .
论文第四部分给出本文的主要结果,即联系于实向量丛一对截面的一个Poincaré–Hopf型公式及其证明。
-
In this thesis we will establish a Poincar é - Hopf type formula for a pair of sections of an oriented real vector bundle , which generalized a recent result of Feng-Li-Zhang in [ 1 ] . This thesis is divided into four chapters .
本文对于联系于定向实向量丛的一对截面建立了一个Poincaré-Hopf型公式,推广了文献[1]中的一个相应结果。本文分四个部分。
-
In this paper , we give an explicit representation of the Sasaki metric on a vector bundle . In particular , we get Sasaki metric on unit tangent bundle T_1S ~ ( 2n + 1 ), by which we calculate the volume of the Hopf vector field V_h .
本文给出了矢丛上Sasaki度量的局部表示,特别得到单位切丛T1S~(2n+1)上Sasaki度量的表达式。