dnn
- 网络动态神经网络
-
Analysis and Research of Architecture on System Extensibility of DNN
DNN体系结构可扩展性的分析与研究
-
Module Container – This drop down list contains module containers installed within DNN .
模块容器-这个下拉菜单包括了DNN安装好的模块容器。
-
The objective of this project is to build a thorough example of how to create unit tested and automation tested DNN modules .
这个项目的目标是建立一个完整的例子示例如何为DNN模块创建单位测试和进行自动化测试。
-
In this paper a learning and identification scheme for a class of unknown multivariable nonlinear system using dynamic neural networks ( DNN ) is presented .
研究了一类基于动态神经网络的未知非线性多变量系统的鲁棒辨识问题。
-
In addition to these basic settings DNN offers some advanced settings which govern the look and feel of the module implementation .
除了DNN的基本设置之外,DNN提供了高级设置,可以控制模块执行中的外观和感受。
-
At last , the functional model and DNN architecture between information fusion and resource management are given out . Information fusion system engineering based on resource management is discussed in detail .
最后论文研究给出了资源管理的功能模型及信息融合和资源管理的DNN结构,详细论述了基于资源管理的信息融合系统工程。
-
Unlike static NN 's ( SNN 's ) to approximate nonlinear components in the dynamic system , DNN 's are used to approximate the whole dynamic system .
不同于静态神经网络自适应控制,动态神经网络自适应控制中神经网络用于逼近整个采样数据非线性系统,而不是动态系统中的非线性分量。
-
The main parts are concluded as follow : ( 1 ) Nonlinear system identification using dynamical neural network ( DNN ) and fuzzy neural network ( FNN ) are summarized .
研究了基于动态神经网络和模糊神经网络的非线性系统辨识问题。
-
In this guide we are covering developing modules , for more information on creating the container files refer to the skinning guide in the DNN distribution .
这里我们只讨论开发模块,有关模块容器请参考DNN的皮肤指导。
-
A structure of a main neural network ( MNN ) and three decentralized neural networks ( DNN ) are designed . The parameter estimations are given by on-line learning of neural network .
并且设计了一个主神经网络和三个分布神经网络的结构,通过神经网络的在线学习,得到需要的参数估计。
-
For overcoming the big inertia and large time delay of the controlled plant , grey predictor is introduced to predict future output value , the predictive result is used as tuning information of DNN .
为了克服系统的大惯性和大迟延,引入灰色预测器对未来信号进行预测,预测结果作为DNN使用的整定信息。
-
Security Details – DNN provides your modules with a security wrapper , here you can define which roles have edit permissions for your module and which roles have view permissions for your module .
安全角色-DNN提供了模块的安全设置,这里你可以对模块定义不同角色的编辑和浏览权限。
-
In this paper , the characteristics of Dynamic Neural Network ( DNN ) which can approximate any complex nonlinear relationships is studied as following : 1 The NN system identification methods are summarized and are compared with traditional system identification .
本文利用动态神经网络能充分逼近任意复杂非线性关系这一特点展开如下研究工作:1对神经网络系统辨识方法进行了综述,与传统的系统辨识方法作比较,指出了各自的优缺点;
-
DNN 's usually are used to approximate the whole dynamic systems , the system control law is composed of the dynamic inversion of the DNN system , adaptive compensation and the NN variable structure control ( VSC ) components .
动态神经网络系统用于逼近整个采样数据非线性系统,系统的控制律由动态神经网络系统的动态逆、自适应补偿项和神经变结构鲁棒控制项组成。
-
The spatial distribution trend of dissolved ammonium nitrogen ( DAN ) in sediments and overlying water and dissolved nitrate and nitrite ( DNN ) in overlying water were same as the distribution of Tot-N.
氨氮在沉积物和上覆水及溶解态硝态氮在上覆水中的分布与总氮分布趋势基本相同。
-
In this paper , classical logic formula computing is discussed deeply . A new computing method for it , based on dynamic neural networks ( DNN ) whose realization steps based on database is studied in detail and is presented combined with NN theory .
对经典逻辑公式计算进行了深入的探讨,结合神经网络理论提出一种动态神经网络的计算方法,并分析了基于数据库串行实现的步骤。