cotangent
- n.余切
-
On the Series Expression of Number Theory Function of Cotangent
关于余切数论函数的级数表示
-
Discussion with relation to symplectic vector field on the cotangent bundle
余切丛上辛向量场的有关讨论
-
The Fuzzy Numerical Tangent Function and Cotangent Function
模糊数值正切函数与余切函数
-
This line , called a cotangent line , is used by the system to modify the curve .
这条线叫做共切线,是系统用来改变曲线形状的。
-
Two kinds of symplectic groupoids structure on the cotangent bundle of Lie group
李群的余切丛上的两种辛群胚结构
-
Equivalent propositions for judging symplectic vector field on the cotangent bundle
余切丛上判定辛向量场的等价命题
-
A new cotangent theorem is deduced to solve the nonlinearity for bearing-only measurement .
通过新提出的余切关系定理,解决了单站纯方位观测的非线性问题。
-
According to the author 's Cotangent relations theorem , bearings-only target tracking with linear motion is achieved .
根据所提出的余切关系定理,实现了纯方位观测的直线运动目标跟踪。
-
It actually represents the Frog Kok of Cotangent value .
它实际上代表了辙叉角的余切值。
-
In this paper , we study the symplectic groupoids structure on the cotangent bundle of Lie group .
本文研究了李群的余切丛上的辛群胚结构。
-
Triangulation Based on Angle-of-Chord Cotangent Parameters Rule
基于弦内角余切参数的三角剖分算法
-
Returns the trigonometric cotangent of the specified angle ( in radians ) in the given float expression
返回给定浮点表达式中以弧度表示的指定角度的三角余切
-
Based on the properties of Riemannian submanifold embedded in ambient space , the tangent and cotangent bundles of configuration space are projected onto free-motion subspace and constraint subspace .
基于黎曼子流形的相关理论,分析了位形流形上的自由速度子空间和约束力子空间的正交分解问题,并采用黎曼联络等工具分别给出了并联机器人在位形空间和工作空间的几何模型。
-
By means of uniting geometry with algebra , the arc length , tangent line , cotangent space and curvature of curve in four dimensional space are investigated , and the corresponding calculation formula in each cases are given .
用形数结合的观点研究了四维空间中曲线的弧长、切线、法空间和曲率问题,并给出了其计算公式。
-
The solitary wave solutions in Literature 1 and 2 are expressed by hyperbola tangent , while this paper proposes a new kind of solitary wave solution of Fisher Equation by using hyperbola cotangent derived from tangent function variation .
文献[3]和文献[4]中的孤波解是用双曲正切表达的孤波解,本文则是由正切函数变换出发而得到的双曲余切表达的Fisher方程的新孤波解。
-
By using the nature induced Poisson structure on the dual bundle of lie algebroids , we construct two different symplectic groupoids structures on the same cotangent bundle , and extend properties of the symplectic groupoids .
利用李代数胚的对偶丛上有自然诱导的泊松结构,.构造出了同一余切丛上的不同的辛群胚结构,推广了辛群胚的性质。
-
The amplitude Kth-power squeezing properties of cotangent states of light field are researched . It is found that this kind of squeezing also exist in the cotangent states and that under certain rang of parameter they appear high degree squeezing effect .
本文研究了光场余切态的振幅k(k≥2)次方压缩特性,发现余切态也存在这类压缩,并在一定参数范围内,呈现高度压缩效应;
-
In this paper , the author studies the relations between Riemann - ζ function and cotangent function , and obtains an identity involving Riemann - ζ function through the relation between cotangent functional power and its differential function , developing the result of article ( 1 ) .
本文作者研究了Riemann-ξ函数与余切函数的关系,并通过余切函数的幂与其导函数的关系,得到了一个关于Riemann-ξ函数的恒等式,推广了文[1]的结果。