Conformal map

  • 网络共形映射;正形地图
Conformal mapConformal map
  1. Research on Trajectory Planning for Mesh Surface Based on Conformal Map

    基于协调映射的网格曲面轨迹规划策略研究

  2. Application of conformal map and δ - function to mechanics of elasticity

    保角映射及δ函数在弹性力学中的应用

  3. A conformal map based isoparametric method for kinematic path generation is proposed .

    基于调和映射技术,提出复杂网格曲面上机构运动轨迹参数化生成的一般方法。

  4. Conformal map is the best choice because it has merits such as little deformation and no grid overlapping , etc.

    协调映射因为具有变形小、网格不会重叠等优点,被作为最佳选择。

  5. According to conformal map and relative theory , the relation of path interval between triangular meshes and parametric region is built .

    根据协调映射及相关理论,建立了原网格曲面和参数域曲面的路径间距及步长的对应关系。

  6. Finite analytic numerical method combining with conformal map has been used to study the diffusion problems at oblate hemispheroid microelectrode .

    应用有限分析法和保角变换研究了半扁球微电极上的暂态扩散问题。

  7. Cutter contact tool path is mapped from parametric region to triangular meshes by means of conformal map and its reverse map .

    根据协调映射求解得到其逆映射,将刀触点轨迹由参数域逆映射回网格曲面。

  8. Based on the theory of conformal map , map model is built for planar parametric circle , rectangle and polygon regions . The boundary of parametric region rests with the need of tool path planning .

    根据协调映射的理论,建立了平面上圆形域、矩形域、多边形域等参数域的映射模型,可根据轨迹规划的需要来选择映射的边界。

  9. Surfaces in Euclidean Space with Conformal Gauss Map

    欧氏空间中具有共形Gauss映照的曲面

  10. In this paper surfaces in Euclidean space with conformal Gauss map are consid - ered . A new characterization of Veronese surface is given from the point of view of Gauss map .

    本文考虑欧氏空间中具有共形Gauss映照的曲面.从Gauss映照的观点给出了veronese曲面的一个新特征。

  11. The expansions of conformal latitude in map projection are studied in this paper .

    对地图投影学中经常遇到的等量纬度正反解展开式进行了新的研究。

  12. The productivity formulas of branch horizontal wells which have or not have common joint are derived by applying conformal transformation and isopleth map of percolation resistance force .

    运用保角变换和等值渗流阻力推得分支水平井(有公共点或没有公共点)产能公式。