地下水动态

  • 网络Groundwater dynamics;groundwater regime
地下水动态地下水动态
  1. 用BP神经网络预测地下水动态

    Utilizing BP neural network to forecast groundwater regime

  2. DM(n,h)模型在地下水动态预报中的应用

    Application of the dm ( n , h ) model in the groundwater regime forecasting

  3. GIS支持下人类活动对地下水动态影响的定量分析

    Quantitative analysis on impacts of human activities on the groundwater resources based on GIS

  4. 灰色系统GM模型在地下水动态异常识别中的应用

    Application of grey system GM model in distinguishing anomalies of underground water

  5. 地下水动态的BP神经网络模型及改进的灰色斜率关联度分析

    BP artificial neural network model of groundwater dynamic and analysis on the improved grey slope coefficient correlation degree

  6. 基于RBF神经网络的地下水动态模拟与预测

    Simulation and Prediction of Underground Water Dynamics based on RBF Neural Network

  7. 然后应用VISUALBASIC(VB)编程语言和数据统计分析软件SPSS软件对石家庄地区地下水动态作了时间序列分析。

    Then we did the time series analysis of groundwater dynamic of Shijiazhuang area with Visual Basic ( VB ) programming language and SPSS software .

  8. 建立了基于数量化理论、GIS和遥感技术的耦合土壤水模型的地下水动态模型;

    Secondly , models on groundwater dynamic condition coupling with soil water and groundwater are developed by the support of theoretical theory , GIS and Remote Sensing technology ;

  9. 以中国科学院栾城农业生态试验站的地下水位观测资料以及气象资料为基础,综合运用降水、蒸发、土壤水、地下水动态观测资料,利用EARTH模型计算了河北平原地下水垂向入渗补给量。

    Observed data of rainfall , evaporation , soil moisture and groundwater are applied synthetically in the transient lumped parameter model ( EARTH ) to calculate vertical recharge of groundwater in Luancheng , Hebei Plain .

  10. 借助计算机技术、GIS技术及虚拟现实技术对大量的多元的地面沉降与地下水动态监测数据进行科学化的管理、模拟预测和可视化分析是非常重要的。

    It is important to manage , model predict , visionally analyse multiple land-surface subsidence and dynamic monitoring data of groundwater resources scientifically by the computer , geographic information system and virtual reality technology .

  11. 在MATLAB平台下,建立了BP-ANN地下水动态仿真模型,并对不同情景下的地下水埋深进行了预测。

    In MATLAB platform , the BP-ANN groundwater dynamic simulation model was established and used to predict the groundwater table under the different scenario .

  12. BP-ANN模型在地下水动态预测中的应用研究

    Application of the model of BP-ANN in the prediction of dynamic state of ground water

  13. 本文运用BP神经网络方法构建了地下水动态监测网的质量评价模型,并以甘肃省武威盆地的地下水位监测网为例进行了实例研究。

    This paper attemptes to construct a model of the quality assessment of groundwater dynamic monitoring network by BP neural network method , and carries out a case study of groundwater dynamic monitoring network in the Wuwei Basin , Gansu Province .

  14. 详细介绍了Elman神经网络的基本结构和数学模型,同时以地下水动态预测为例,给出用Elman神经网络建立地下水动态预测模型的方法。

    We present the structure of Elman dynamical recursive neural network and offers a approach based on Elman dynamical recursive neural network for groundwater level predication .

  15. 为了适应油田地下水动态观测资料的处理,有效地排除干扰,对Weiner滤波方法进行了改进。

    The Weiner filtering method is improved for removing interference factors in observation data of groundwater dynamic of deep well in oil field .

  16. 关中中部近10a地下水动态变化的区域响应分析&以咸阳市为例

    An Analysis on Regional Responses of the Dynamic Variations of Groundwater in the Middle Areas of Guanzhong Plain in Recent Decades & A Case Study of Xianyang

  17. 结果表明,DM(1.1)模型对系统的趋势性预测效果良好,本区地下水动态总的水位趋势是逐年降低的。

    The results indicate that the model DM ( 1 , 1 ) for the tendentious prediction of the systems is of good effects and the general water table level tendency of water regime in this area as drop-ping year by year .

  18. 本文扼要地介绍了邓聚龙教授创立的灰色理论的某些基本概念,并试图用该理论中的动态预测模型(DM(1.1))来进行地下水动态预测。

    This paper introduces briefly the same basic concepts about the grey systematic theory found by professor Deng Julong , and tries to forecast the ground water regime by means of the regime prediction model ( DM 1 , 1 ) in this theory .

  19. 通过对湘潭市区35个地下水动态监测点10余年监测发现:地下水位出现了10年来的最低位,总平均下降0.5m;

    Through monitoring 35 moving observation point for the groundwater in Xiangtan downtown , it is discovered that the groundwater table emerged at the lowest level during this ten years . The groundwater table decreases in 0.5 m at average ;

  20. 研究表明,区内地下水开发利用程度较高,农业的季节性开采是影响地下水动态的主要因素,地下水位表现为典型的开采型动态,在现有地下水开采条件下,地下水位将以1ma的速度下降。

    It 's suggested , seasonal agriculture exploitation is the main factor to affect the groundwater regime , and if we keep the actual state , the groundwater level will decline by 1m / a.

  21. 频谱分析方法在地下水动态预报中的应用

    Application of Spectral Analysis Method to the Prediction of Groundwater Regime

  22. 考虑到地下水动态作用的边坡稳定性有限元分析

    Finite element analysis of slope stability in consideration of groundwater regime

  23. 地下水动态数据库系统

    Trends the database management system for the groundwater regime dynamic news

  24. 利用地下水动态观测资料估算芦苇耗水量

    Estimating Water Consumption of Reed with Observed Data of Groundwater Regime

  25. 地下水动态预测的自记忆性模型及其应用研究

    Study for Self-memory Model And Its Application in Predicting Groundwater Level

  26. 大庆油田西部地区地下水动态监测网优化设计

    Optimal design of groundwater monitoring network in west Daqing oil field

  27. 地下水动态观测网优化设计研究

    A study on Optimal Design for ground water regime observation network

  28. 三维趋势面分析预测地下水动态

    Groundwater regime prediction by means of three dimensional trend surface analysis

  29. R/S分析法在地下水动态分析中的应用

    Application of R / S Method to Dynamic Groundwater Analysis

  30. 电容式水位传感器及其在地下水动态监测中的应用

    Capacitive water level transducer and its application to dynamically monitoring underground water