semi-group
- 网络半群
-
In this paper the semi-group concept in functional analysis is expounded by examples .
本文通过实例给出泛函分析中半群的概念。
-
Renormalization semi-group symmetry in quantum field of strong interaction at short distance
强相互作用短距离量子场的重整化半群对称性
-
In addition , the semi-group theory is also useful application . Also described in other areas of functional analysis applications .
此外,半群理论也很有应用价值.还阐述了泛函分析在其他领域中的应用。
-
The key step in this methodology is to explore the semi-group structure in the system under consideration .
这些方法的关键是要发现对象体系中的半群结构。
-
The Application of Graph Theory to a Commutative Semi-group
图论在交换半群上的应用
-
Using their one-way and semi-group properties on the finite fields , a novel session key agreement algorithm is presented .
利用有限域上Chebyshev多项式的单向性和半群特性,构造了一种新的会话密钥协商算法。
-
From the semi-group theory different Identity-Based conference key distribution methods for all kinds of communication networks are studied in this paper .
本文从近世代数中的半群理论观点出发,对利用身份证在环型、星型和全联通型的通信网中,实现密钥分配的方法进行了较全面的研究。
-
The Invariant Measure and Ergodic Property of a Markov Semi-Group
马尔可夫半群的不变测度与遍历性
-
Semi-group theory in particle physics
粒子物理学中的半群理论
-
The Semi-group Theory of Self-similar Random Variables
自相似随机变最的半群理论
-
The Properties of Rough Ideals in a Semi-Group
半群上的粗糙理想的性质
-
An Expression of Commutative Semi-group Element
一个交换半群的元素的表示形式
-
The squeezing property of the nonlinear semi-group associated with this equation and the existence of exponential attractor are proved in the paper .
证明了该方程有关的非线形半群的挤压性质和指数吸引子的存在性。
-
By using the important theorem of the Sobolev space ( embedding theorem ) and the standard semi-group theory , local existence of the mild solution is proved .
从Sobolev空间的重要定理&嵌入定理入手,利用半群理论证明了mild解的局部存在性。
-
And then based on some properties of Metzler matrix , the positive definite problem of delay Volterra integro-differential equation is discussed in intensity continuous semi-group .
然后,利用Metzler矩阵的一些性质在强连续半群上讨论时滞Volterra积分微分方程的正定性问题。
-
Based on the number set , a new commutative semi-group is established in the integer number and extended in number fields of rational number , real number and the complex number .
在数集的基础上,在整数域上建立了一个新的交换半群,并在有理数域、实数域和复数域上进行了推广;
-
At the same time , the thesis describes also the abstract description on the connection among frameworks , sets mappings between frameworks to form a Semi-group homomorphism .
同时给出了框架间关联关系的抽象描述方法,在框架间建立映射,形成半群同态。
-
Segal pointed out the nonlinear semi-group theory of the equation , and Strauss ' 72 ' 73 ' studied the scattering of small solution for the equation .
Segal提出非线性半群理论,Strauss就非线性波动方程小解的散射性作了开创性的研究。
-
The existence of a tensor product is proved in the left quasi-normal band category , and the relationship with the tensor product in the semi-group category is provided .
证明左拟正规带范畴中张量积的存在性,并证明了它与半群张量积的关系,同时给出半格在左拟正规带范畴中张量积与在半格范畴中张量积之间的关系。
-
Semi-group structure 、 Delphic property and denseness of Delayed Renewal Sequence are also presented in the dissertation . Secondly , we study ε - Regenerative Phenomena through p-a sequence .
延迟更新序列的半群结构、Delphic性以及稠密性,本文都进行了介绍。其次通过研究p-α序列对来研究ε-再生现象。
-
Semi-Group Rings that are Pre-Boolean Rings
半群环成为预布尔环
-
By using method of ring and semi-group theory and by widening the satisfactory conditions of the subsemiring of semiring , the concept of weak pseudo ideal of semiring is introduced .
借助环论与半群理论的思想方法通过对半环的子半环的条件进行加强,提出了半环的弱伪理想的概念。
-
Finally , the security of the session key agreement algorithm is analyzed and it is concluded that any polynomials , which have semi-group property on real fields , can be used to construct session key agreement algorithm .
对算法的安全性进行了分析,指出任何在实数域上具有半群特性的代数多项式都可用来构造会话密钥协商算法。
-
Finally , by using strongly continuous semi-group theory of functional analysis , the existence of unique positive solution of the system has been proved , and the operator of system generates a positive strongly continuous semi-group is explained .
最后,利用强连续算子半群理论证明了并联可修系统的非负解的存在唯一性,并说明了系统的算子生成一个正的强连续算子半群。
-
The necessary and sufficient conditions , sufficient conditions , and the constructive expression of the state feedback such that the closed loop singular distributed parameter system is asymptotic stability are given via functional analysis and linear operator semi-group theory .
应用泛函分析及线性算子半群理论的方法给出了使闭环广义分布参数系统渐进稳定的充要条件,充分条件及状态反馈的构造性表达式。
-
Based on the quantum master equation and semi-group approach , the general performance of the cycle is investigated . Expressions for some important performance parameters , such as the coefficient of performance , cooling rate , and power input , are derived .
应用量子主方程和半群逼近,研究了循环的一般性能特性,导出了制冷循环的制冷系数、制冷率和输入功三个重要参数的一般表达式。
-
In the paper we extend the state space of Chebyshev polynomials to the real number domain , employ the semi-group property of Chebyshev polynomials to construct a one-way door-trap function , and avoid the attack .
该方案将Chebyshev多项式的状态空间扩展到实数域,从而利用Chebyshev多项式的半群特性构成具有单向带陷门的公钥加密算法,同时又可以避免上述已知密文的攻击。
-
This paper studies linear elastic systems and proves that the system 's main operators generate a stable analytic semi-group if the elastic operator A and damping operator B are positively defined in the form of the same domain and same order .
本文考虑了带结构阻尼的自由弹性梁分布参数系统,证明了当弹性算子A和阻尼算子B是正定具有相同定义域的同阶算子时,该系统生成一个稳定的解析半群。
-
In this paper , the author uses this method to study some characters of chaos , introduces the chaotic semi-group action and obtained some conclusions . First , this paper describes the development about dynamical system , and the background and main content of this paper .
本文采用这种方法研究了混沌的一些性质,并引入了混沌半群作用,得到了一些结论。
-
In this paper , we transform the model of the partial differential equation of the population developing system to the abstract Cauchy question . We discuss the solution existence and convergence of the system by the semi-group of class C_0 in function analysis .
用线性算子的理论将人口发展的偏微分方程模型转化为抽象的Cauchy问题,并用泛函分析中的C0半群理论来研究该系统解的存在性和收敛性。